一种用于气候模拟的分段积分法及其在荒漠化扩展敏感性试验中的应用

来源 :兰州大学 | 被引量 : 4次 | 上传用户:ccb332
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由于模式和初始场不可避免的误差,气候模拟仍然存在明显误差。本文研究了在这种形势下利用区域气候模拟气候变化,特别是模拟局地的外强迫变化改变引起的气候变化时可能出现的问题。数值试验表明,尽管现有的区域气候模式能够较好地模拟气候的空间分布和季节变化的基本特征,但是用于研究局地外强迫变化的气候效应而进行的敏感性试验时可能造成大的相对误差,使研究结果失去可信性。本文认为在研究外强迫变化的气候效应时,在某些条件下可以通过四维同化方法将观测或分析场引入模拟过程,保证对气候现状的模拟有足够的准确性,从而提高敏感性试验的可靠性,基于这一思想提出了一种新的分段积分方法,并将其用于研究我国西北荒漠化扩展对气候的影响。论文的主要工作和结论如下:(1)采用通常的敏感性试验的方法,利用区域气候模拟研究我国西北荒漠化扩展引起的气候变化,比较了从不同初始场出发模拟得到的荒漠化扩展的差值场的差异,结果表明尽管模式对气候现状的模拟能力比较令人满意,但从“差值场”的角度看相对误差不可忽视,而且长时间的积分后这种误差还会增大。(2)阐述了基于资料同化技术的分段积分方法提出的思想和实施方案。利用一个低阶谱模式进行的模拟试验证明,模式误差可能导致大气状况进入和实际不同的平衡态,导致模拟结果出现气候漂移,也严重影响到敏感性试验的结果。利用本文提出的分段积分方法,不断替换模式初始场,能够有效地克服模式误差的累积,抑制气候漂移的出现,保证了敏感性试验结果的可靠性,证明该方法是可行的。(3)利用中尺度模式(MM5)进一步检验和比较了分段积分方法与传统连续积分方法的优缺点。试验表明,分段积分方法能够有效地克服误差的累积,提高模式对现状的模拟能力,这保证了利用此方法作敏感性试验比传统方法更可信。(4)按照我国20世纪90年代荒漠化扩展的速度,规定我国西北地区的荒漠扩展范围,通过MM5模式利用分段积分方法模拟研究荒漠化扩展对我国夏季气候的影响。发现荒漠化扩展后,我国北方大部分地区降水减少,南方降水增加,将有可能加剧我国南涝北旱的形势。
其他文献
由于兼具毛细管电泳(CE)超高分离效率和激光诱导荧光检测(LIF)超高灵敏度的优势,CE-LIF联用技术已经成为测定多组分化合物的一种有力工具,在药物及生命分析等领域得到了广泛的应用。但是,很多化合物本身并没有荧光,即使有些化合物自身具有荧光,其激发波长和所用激光光源波长的不一致也会限制CE-LIF方法的应用。为了克服这一缺点,分析工作者通常采用衍生反应修饰分析物,使之转变成具有适合光学性质的衍生
学位
作为匹配和拟阵交的共同推广,Cunningham和Geelen在1996年引入了图的路匹配的概念.他们指出许多领域的问题都可以转化为路匹配问题,也就是说,利用路匹配可以解决例如匹配、拟阵、多面体以及代数等很多方面的问题.作为路匹配的应用,他们给出了可匹配集合多面体的强多项式分离算法,并证明了最大路匹配的值就等于给定图所确定的匹配拟阵中顶点集合的秩,同时也等于Tutte矩阵的秩等等.本文共分为六章,
在这篇博士学位论文中,我们主要研究如下的两类反应扩散方程和解的长时间行为,主要是全局吸引子存在性和局部几何结构问题.对于第一类方程,我们从方程弱解的存在性出发,应用强弱连续半群的概念以及相关的判断吸引子存在性的方法,在f(u)是任意次多项式增长且λ>0是任意常数的情况下,得到方程在空间Lq(Ω)和H01(Ω)全局吸引子的存在性.而后,对全局吸引子的维数下界做出估计.从理论上说,应用Z2指标理论,我
学位
本文基于微分方程的有限差分技术以及一致网格增量未知元方法,分别对一维和二维具有时间依赖系数的热方程以及一类一般的三维对流扩散方程进行了不同的研究。由于一致网格增量未知元方法可以很好地降低矩阵条件数,所以该方法的优越性在我们的理论分析和数值实验中都很好地体现了出来。非一致网格作为一种更为灵活的形式,对于许多问题,特别是边界层问题的求解,有着一致网格所无法比拟的优势。相应地非一致网格上的增量未知元方法
图的谱理论是代数图论的主要研究领域之一,涉及图的谱和laplacian谱,前者起源于量子化学.1931年,E.Hückel提出了分子轨道理论,建立了分子轨道能级和分子图的谱之间的联系,大大推动了图的谱理论研究.图的谱理论主要是利用矩阵论,结合组合论和图的结构性质研究图的各种矩阵的谱,讨论这些谱与图的结构性质及图的不变量之间的关系.L.Collatz和U.Sinogowitz的数学论文“Spektr
曲面Fullerene图是嵌入到曲面上的3-正则有限图,它的每个面的边界为5长或6长圈.这样的嵌入只能在球面、环面、克莱因瓶和射影平面上实现,其五边形面的个数分别为12,0,0和6.而球面Fullerene图就是通常的Fullerene图,即碳族Fullerene的分子图.关于Fullerene图的与匹配理论相关的问题已得到广泛关注和研究.本文分四章对曲面Fullerene图进行了研究.我们确定了
本文主要研究E-反演半群的性质和同余,全文共分六章。第一章我们引入并研究了E-反演半群S上的正则同余.同时引入了E-反演半群上的核正规系,证明了S上的每一个正则同余都是由其核正规系所唯一确定的,并用核正规系刻画了E-反演半群S上的正则同余.第二章研究了E-反演半群S上正则同余与其特征迹的关系,确定了具有相同特征迹的最小和最大正则同余.同时也刻画了具有相同特征迹(?)的所有正则同余.建立了S上具有特
本博士论文主要是研究具p(x)-Laplacian算子的在RN中的有界光滑域上的形如下面的椭圆方程问题的解的存在性,多解性及本征值问题。这是一个新的而有趣的课题。本文的特点之一是在边界(?)Ω上有包含|u|p(x)-2u的项。我们根据b(x)的形式,考虑了Robin边值问题与Steklov本征值问题。在Robin边值问题中,根据非线性项h(x,u)的特点,我们分四种情况进行讨论。即,Robin本征
如果图G的一个子图F是G的一个支撑子图,则称F是G的一个因子.Akiyama和Kano将图的因子问题分为两类,分别称为:度因子问题和分支因子问题.如果用因子的度来描述这个因子,则称该因子为度因子.例如,如果一个因子F的所有度都等于1,F是一个1-因子.与此同时,哈密尔顿圈问题可以看成是寻找一个连通的因子使得每个点的度恰好等于2.另一个方面,如果一个因子是用图的概念来描述,则成该因子为分支因子.例如
测度链上动力方程理论不但可以统一微分方程和差分方程、更好地洞察二者之间的本质差异,而且还可以更精确地描述那些有时在连续时间出现而有时在离散时间出现的现象。所以,研究测度链上动力方程既有理论意义,又有现实基础。类似于微分方程和差分方程,非线性项变号的边值问题同样是一个困难且重要的问题。为此,我们研究了测度链上非线性项变号的p-Laplacian奇异多点边值问题正解的存在性。借助于上下解方法和Scha