自动分析仪测钴方法研究

被引量 : 0次 | 上传用户:pjkxqx
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在钴冶炼过程中,对沉钴液中钴含量的测定是指导控制生产不可缺少的环节。为了实现快速、准确、简便地测定钴的目的,我们将分光光度法和流动注射法结合起来,从化学、机械、电路三大学科入手,研制开发了一台针对性很强的智能型钴分析仪。 智能型钴分析仪工作的化学依据是亚硝基R盐法测钴。用流动注射分析法讨论了显色剂浓度、管道内径、管长、流速和分析频率、注样体积以及管道几何形状对吸光度测定的影响。从实验结果得到,仪器工作的参考条件是:亚硝基R盐溶液0.01%,管道内径为0.5mm,反应管长为1
其他文献
催化对电极是染料敏化光伏器件的重要组成部分,其主要作用是促进外电路电子对I3-的还原,从而产生I-用于染料的还原再生。传统的Pt对电极具有优越的催化活性和导电性,但其较高的成本不利于染料敏化光伏器件的商业化推广。因此设计合成具有高效电荷/电解质扩散通道和较高催化活性的非铂对电极材料对于实现廉价高效光伏器件至关重要。石墨烯具有较高比表面积和优异的导电性,是构建多维导电和离子扩散通道催化对电极的理想基
本文首次采用微波辐射法合成了四种含有不同氮原子数目的二氧代氮杂冠醚功能化的聚苯乙烯。用其与氯化铜络合分别合成了四种不同的高分子铜离子络合物。用红外光谱;电导率法;光电子能谱表征了本文合成的高分子铜离子络合物的结构。研究用合成的高分子铜离子络合物与亚硫酸钠水溶液催化体系室温下催化MMA的聚合反应。提出了配位饱和高分子铜离子络合物与亚硫酸钠水溶液催化体系催化MMA聚合反应机理。 本文研究了用合成
鉴于杂环类化合物的重要性,研究并开发构建杂环结构单元的新方法一直是有机合成化学的重要研究内容。另一方面,过渡金属催化的有机反应大都具有条件温和、操作简单、效率高等优点,已成为合成杂环化合物的有效方法和常用手段。基于上述背景,论文设计并研究了经由过渡金属催化的环化反应合成6-溴代呋喃并[2,3-d]嘧啶核苷、萘并[1,2:4,5]咪唑并[1,2-a]吡啶和咪唑并[5,1,2-cd]中氮茚等含氮稠杂环
本文利用超声分散制备的卵磷脂(PC)囊泡作为骨矿化时骨细胞膜模拟体系,用于改变骨主要无机矿物纳米羟基磷灰石(Hap)的反应微环境,控制生成纳米Hap晶体的粒径大小、形状和晶型结构。
脲类(包含环脲化合物)和氨基甲酸酯类化合物分子内都含有肽键(-CONH-),故大多数都表现出较强的生物活性,是两类重要的精细化学品(尤其环脲化合物含有杂环骨架,常见于一些生物活性分子中,药用价值非常高)。在农药、医药、有机合成等方面都有它们广泛的用途。在农业方面可以用作除草剂、杀虫剂、植物生长调节剂以及杀菌剂。在医药方面用于药物中间体、抗病毒药物、抗肿瘤药物、神经调节剂、HIV蛋白酶抑制剂等等,因
人类基因组序列图绘制完以后,以揭示基因组的功能及调制机制为目标的功能基因组学成为后基因组时代的工作核心.基因表达调控又是其中最核心的问题,它是最终揭示动植物生长、
随着当今科学技术的发展,关于功能材料的研究已经日新月异,尤其是基于功能材料的有机-无机杂化材料更是现代材料发展的主体趋势。这种材料根据其有机-无机化学组分间的结构多样性以及物理化学性能的独特性,通过两种或多种不同化学组分之间的相互杂化,对材料的功能特性进行不断的互补和优化,从而制备出新型的功能材料,并且这种功能材料在当今社会的新能源、生物药物等方面都有着重要的应用。这种功能材料所必不可缺的组分—杂
本文发展了一个选择性检测蛋白质的支链NH2信号的脉冲实验,并用该实验获得了蛋白质PDZ7的支链NH2信号的识别。此外,在本论文中对新的NMR实验方法、以及NMR在蛋白质结构测定中的
备受世界关注的纳米材料是多学科交叉的国际前沿研究领域。本论文综述了纳米材料的最新研究进展,概括了纳米材料的最新分类、最新的制备手段以及在新的研究领域的应用。基于对以上内容的分析,本论文以近几年来一直备受人们关注并倡导的环境友好,经济,节能的化学反应目标为出发点,选择了有应用前景的钯基纳米材料为主要研究内容,探究了溶剂、非贵金属以及结构独特的氧化物载体对Pd基纳米材料的合成、负载量以及性能等方面的影
硫化物是一类很好的发光材料的基质,在稀土离子的激活下能发出各种颜色的光,有很好的应用前景,但由于硫化物的抗氧化性及抗湿性能较差,严重制约了硫化物的应用.该文合成了系