基于频谱的错误定位测试用例优化方法研究

来源 :中国矿业大学 | 被引量 : 0次 | 上传用户:lanbing510
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着软件规模及复杂度不断增加,软件不可避免地会出现一些错误。通过调试技术修正软件错误成为了开发人员处理软件错误的常用手段。错误定位是调试技术的重要步骤。然而,传统的错误定位一般由手工完成,不仅费时费力,而且难以保证错误定位的质量。自动化错误定位技术能够提高错误定位的效率,保证错误定位的质量。因此,自动化错误定位技术成为软件工程领域一项重要研究内容。基于程序谱的错误定位方法是错误定位方法中具有代表性的方法。现有的基于程序谱的错误定位方法没有充分挖掘失败测试用例的覆盖信息,导致其定位精度不够理想。在错误定位的过程中,由于需要执行的测试用例数目比较多,导致了需要收集的程序频谱信息比较多,从而使得错误定位的开销增大。如何提高错误定位的定位精度,并降低错误定位的代价成为了亟待解决的问题。本文为解决上述问题,分别提出了基于启发式规则的错误定位方法和基于向量相似度的测试用例约简方法。本文主要工作如下:(1)提出了多种启发式规则,并实验验证了所提规则对基于频谱的错误定位方法的影响。在传统基于频谱的错误定位基础上,分别选取最大覆盖失败测试用例、最小覆盖失败测试用例、最大距离失败测试用例、最小距离失败测试用例。基于选取的测试用例覆盖信息进一步减少怀疑度列表中所需要检查的语句数量,以提高错误定位的精度。(2)提出了基于向量相似度的测试用例约简方法,并实验验证了所提方法在测试用例约简方面的有效性。通过SMC相似度、Jaccard相似度、Dice相似度和Hamming相似度,分别计算失败测试用例与成功测试用例之间的相似度。基于这四种相似度度量对成功测试用例进行排序,并依次选取测试用例,直到满足整体覆盖时,停止测试用例约简,以降低测试用例集的规模。(3)设计并实现了一个基于Java的错误定位原型系统。该原型系统能自动收集测试用例的覆盖信息与运行结果,并计算语句的可疑度。在此基础上,实现了基于启发式规则的错误定位方法及基于向量相似度的测试用例约简方法。
其他文献
高功率毫米波在热核聚变研究、高分辨远距离雷达、材料工业加热等方面有着广泛的应用前景。其相关技术研究已成为国内外学者关注的热点。准光匹配单元(Matching Optics Unit)是高功率毫米波链路系统中的核心器件。其主要功能是完成高功率回旋振荡管输出的准高斯模向长距离波纹波导传输线中HE11模式的高效转换,其性能直接决定了整个传输链路的总效率。本文配合国内高功率回旋管及其配套传输系统的研制需求
众所周知,我国的经济持续增长,人民的生活水平有很大的提高。但是,随之带来的问题是快速消耗的资源以及不断恶化的环境,环境污染和资源短缺成为急待解决的难题。机械制造业是
网络流量管理的主要任务是测量和分析网络流量的信息,并根据这些信息设计合理的路由方案来优化网络流量分布,以提高流的传输效率和网络资源的利用效率。在传统网络中,交换设
尹伊桑(Isang Yun),二十世纪朝鲜裔德国籍作曲家,他一生创作过多部歌剧、交响曲、室内乐以及独奏器乐作品,这些作品带有浓郁的东方色彩,并且与中国的哲学文化——道教文化有着紧密的联系。尹伊桑所创作的小提琴无伴奏作品K?nigliches Thema(1976)译为《国王主题》,这部作品为帕萨卡利亚的音乐形式,是向巴赫《音乐的奉献》致敬的一部现代小提琴无伴奏作品。本论文由三个章节组成,第一章为尹
地杆菌(Geobacter)具备胞外电子传递的独特能力,是驱动地球生物化学反应的重要微生物。目前对Geobacter的研究几乎都在暗环境中进行,然而由于太阳光的普遍存在,以及光催化生物反应器的广泛应用,Geobacter不可避免地会生长在光环境中。光催化半导体纳米颗粒(nanoparticle,简称NPs)在自然界中大量分布,其中硫化镉(CdS)NPs在可见光范围即可产生光电子,因此常被应用于光-
贝叶斯推理是概率推理的一个重要领域,已广泛应用于医学、司法、教育、人工智能等领域。在不确定性事件中,贝叶斯规则对人们能做出正确判断或决策起着重要作用。如乳癌诊断中
镓、铟是非常重要的战略资源,它们在电子产业、太阳能电池领域、医疗卫生行业等诸多方面发挥着重要的作用。伴随科技的不断发展,镓、铟的需求量也在增长。然而,它们在地壳中
一个国家的综合国力及其在国际上的竞争力的强弱常以制造业为标志来衡量,而传统的制造业机械加工方式始终根据设定好的切削参数来进行加工,无法根据加工状态来进行实时的调控
N80钢是石油和天然气管道中使用最广泛的钢之一,在H_2S、CO_2、O_2和Cl-的协同作用下易发生点蚀和应力腐蚀开裂。超疏水表面能让水分子更难与金属表面相接触,增强其耐蚀性能,在金属防护方面拥有潜在的应用前景。本文以N80钢为基底材料,主要通过水热合成和退火处理在不同条件下制备了三种微纳米结构,经过低表面能物质修饰后得到超疏水表面,并系统的从表面润湿行为、微观结构、化学组成及电化学性能几方面进
过去数十年来,基于半导体的光催化全水分解产氢气的相关研究已经获得了长足进展,是将太阳能转变为化学能的理想方式。目前为止,数以百计的半导体被报道具有潜在的太阳能水分