半对偶模及相关Gorenstein同调维数

来源 :曲阜师范大学 | 被引量 : 0次 | 上传用户:alxp
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文对半对偶模及相关的C-Gorenstein对象作了进一步研究,得到了一些有意义的结论.本文共分六章. 第一章介绍了C-Gorenstein对象的背景及写作思路. 第二章是预备知识,给出了半对偶模、平凡扩张的概念,并给出了平凡扩张及“环变”的Gorenstein同调维数的性质. 第三章对C-Gorenstein内射、投射及平坦同调维数做进一步研究. 第四章介绍了C-Gorenstein维数的有限性可以用Auslander和Bass范畴来解释,并利用Auslander与Bass范畴导出了C-Gorenstein投射,内射及平坦模的三个判定定理. 第五章证明了关于真维数性质的几个定理和C-Gorenstein真维数与通常的C-Gorenstein维数是一致的定理. 第六章对任意的半对偶A-模c,定义了三个Cohen-Macaulay维数,给出了Cohen-Macaulay环的十个等价命题,证明Cohen-Macaulay维数的Auslander-Busbaum公式.
其他文献
本文研究若干代数结构的上同调.全文共分为四章: 第一章简单地介绍了本文所研究的课题的发展背景. 第二章给出了文中所用到的一些基本概念和基本结论. 第三章研究具有有
众所周知,Stein流形是-个极其重要的流形,在Stein流形上有很多非常数的全纯函数.Cn就是-个Stein流形,所以在Stein流形上研究多元复分析是很自然的.积分表示方法是多元复分析的主
对于带有常数分红界线的经典复合Poisson风险模型,在参考文献Lin et al.[1]中,研究了折扣罚金函数即著名的Gerber-Shiu函数. Gerber-Shiu函数是研究分红策略问题的一个重要工具,在
调和映射是几何分析中一类重要的研究对象.调和映射的存在性问题是几何分析中有意义而又非常困难的问题.研究两个流形之间的调和映射的存在性问题是研究调和映射存在性问题最重
本文主要研究一类广义IMBq方程的半有界问题. 本文分四章: 第一章为引言; 第二章研究广义IMBq方程的初边值问题的局部解的存在惟一性; 第三章通过积分估计证明第二章