论文部分内容阅读
生物碳素材料以优良的化学稳定性、减摩耐磨性和良好的生物相容性被广泛的生物医用材料。生物碳素材料的血液相容性一直是研究的重点。考虑到植入材料与血液的相互作用主要发生在材料的表面,因此人们试图通过对生物材料表面界面特性进行表征,探讨这些参数与材料血液相容性的关系,从而为材料设计中构成成分的选择和材料制备中工艺方法和工艺条件的控制提供依据。 本文就是通过对生物碳素材料的表面特性表征和血液相容性评价,通过灰色关联分析来探讨这些表面参数和血液相容性评价指标之间的相关关系,寻求影响生物碳素材料血液相容性的首要因素,并对生物碳素材料表面界面特性对其血液相容性的影响机理进行了探讨。 本文利用等离子体浸没离子注入-粒子束增强沉积技术(PⅢ-IBED)制备了类金刚石薄膜,利用微波等离子体化学气相沉积技术(MPCVD)制备金刚石薄膜。利用原子力显微镜、拉曼光谱、红外光谱和润湿角检测技术监测生物碳素材料的表面粗糙度、含氢量、杂化比和表面能量等性质,利用体外动态凝血时间、血小板消耗率和溶血率对所制备的生物碳素材料进行血液相容性评价。 为了探讨在众多的表面界面参数中,哪些是主要参数,哪些是次要因素;哪些参数对血液相容性影响大,哪些参数发挥的影响小;哪些参数对结果起到生物碳素材料表面界面特性与血液相容性的关系强化作用,哪些参数对结果加以抑制。所以最后本文首先定性分析两者之间的相关关系,并从机理上对这些表面界面参数对血液相容性的影响做了分析和探讨,然后利用灰色关联分析的方法定量的分析了两者之间的关系。 通过实验,本文得到结论如下: (a)类金刚石的厚度与Sp,的含量成正比,厚度增加sp,成分增加。氢原子的引入有利于sp3结构的形成。 (b)邓氏关联度不宜用于分析多目标决策的因素分析问题,本文采用的改进的灰色关联度分析方法能够克服邓氏关联度的缺陷,用于多目标决策因素分析得到较好的效果。 (c)含氢量是影响生物碳素材料抗凝血性能的首要因素。生物碳素材料表面界面特性与抗凝血性能的关联程度依次是: 含氢量>界面张力>色散极性比>表面粗糙度>杂化比习隋界表面张力 (d)表面粗糙度是影响血小板粘附或者凝聚的首要因素。生物碳素材料对血小板粘附或聚集影响程度依次为: 表面粗糙度>临界表面张力>色散极性比>界面张力>杂化比>含氢量 (e)界面张力是影响红细胞的首要因素。生物碳素材料对溶血率影响程度依次为: 界面张力>杂化比>表面张力>含氢量>色散极性比习临界表面张力 (f)纤维蛋白原向生物碳素材料表面转移电子的能力是另为一个需要来表征和评价的重要表面参数 (g)具有良好血液相容性的生物碳素材料应该具有以下性质:表面张力极性分量高、光滑表面、含氢量和sp3成分适当,表面张力和界面张力在一定的血液相容性区域。