【摘 要】
:
近年来,生物识别技术在生活、金融、法律、刑侦等应用场景中的需求越来越高,而人脸识别技术以其特征信息丰富、便于采集和高精度等优点成为最受欢迎的生物识别技术。实际应用场景中的人脸识别系统多为小样本问题,即人脸数据库中的每个人脸类别仅能采集到少数样本,我们统称这一类问题为小样本人脸识别问题(FFR)。通常,人脸图像的采集是建立在非可控自然条件之下,往往带有光照、表情、姿态、遮挡等多种变化,因此,复杂变化
论文部分内容阅读
近年来,生物识别技术在生活、金融、法律、刑侦等应用场景中的需求越来越高,而人脸识别技术以其特征信息丰富、便于采集和高精度等优点成为最受欢迎的生物识别技术。实际应用场景中的人脸识别系统多为小样本问题,即人脸数据库中的每个人脸类别仅能采集到少数样本,我们统称这一类问题为小样本人脸识别问题(FFR)。通常,人脸图像的采集是建立在非可控自然条件之下,往往带有光照、表情、姿态、遮挡等多种变化,因此,复杂变化情况下的小样本人脸识别问题(FFRUCC)是目前人脸识别的重要研究方向。本文针对FFRUCC问题进行了深入的分析,基于对现在已有算法的改进,提出了两个新颖且有效的FFR方法,其主要的研究工作与创新点如下:1)提出了一种联合稀疏表示(SRC)和卷积神经网络(CNN)的小样本人脸识别算法(BDL),利用整体结合局部的思想构造稀疏字典以解决FFR问题。该方法首先对人脸图像进行预处理,根据人脸关键点进行五官定位和人脸对齐,并将样本图像切割成四个局部区域来进行样本增强;接着利用卷积神经网络提取更具有辨别性的局部特征和整体特征,并将它们构建成稀疏字典;然后使用具有稀疏约束和余弦约束的网络损失函数(Spars Loss)来优化网络参数,在缩小类内距离的同时扩大类间距离;最后采用加强的稀疏表示分类(DSRM)来进行人脸识别。实验结果表明,BDL算法在AR数据集和扩展YaleB数据集上分别取得了高达92.64%和91.93%的识别率,且对遮挡变化和表情变化具有一定的鲁棒性。2)提出了一种基于滑动分块生成对抗网络的小样本人脸识别算法(SGAN),利用滑动窗口获取人脸信息进而将侧脸图像生成为正脸图像,并建立生成识别一体化系统,重点解决了姿态变化下的FFR问题。该方法首先利用镜像对称和轴对称进行虚拟样本生成以达到样本扩充的效果;然后为了保证后期滑动分块的准确度,对所有的样本图像进行十字交叉对齐处理;接着利用滑动窗口遍历样本图像使人脸整体特征变为多个窗口特征,再将得到的窗口信息依次有序地输入到生成对抗网络,利用改进的组合损失函数生成人脸正面图像;最后在生成正脸图像的同时进行了人脸识别。实验结果表明,SGAN算法对偏转角度小于45度的小姿态人脸正面生成具有一定的有效性,并且提高了姿态变化和光照变化下小样本人脸识别的性能。
其他文献
数字图像相关方法作为一种高精度、非接触式的全场变形测量方法,已经在土木交通、生物医学、航空航天等领域有了广泛的应用。对于一种测量方法来说,其测量结果的准确性和一致性是最为重要的,因此有必要对数字图像相关方法测量精度和测量结果的一致性展开研究。目前对散斑场参数的选择和测量系统的布置方面已经有了大量研究,但对相机标定和计算参数选择的研究相对较少。由相机标定或计算参数选取不当导致DIC测量结果不一致甚至
随着物质生活的不断丰富,人们开始探索贴合人类使用习惯的人机交互技术,其中基于视觉的手势识别技术为机器理解手势提供了必要的辅助。基于图像的手势识别无需佩戴其它额外的硬件设备,与传统的输入方式相比,无需人机接触,且易于操作,在手语识别、辅助驾驶、设备控制、智能家居等交互领域具有广泛的应用。然而,目前大部分的研究仅限于光照充足的环境下,对于全天候执行的任务,特别是军事、安防领域等需要夜间执行的工作,普通
近年来我国建筑业规模持续扩张,但传统建造方式高污染、高消耗、低生产率、低标准化等问题愈演愈烈,在此期间,装配式建筑作为生产方式变革途径之一,以其低能耗、高效率的特点获得政府和行业的青睐。但随着装配式建筑在建筑市场上的比例越来越大,装配式建筑暴露的问题也越来越多,如何又快又好的推广装配式建筑成为政府和学术界关注的焦点。目前针对装配式建筑施工进度管理多沿用传统现浇建筑进度管理方法,由于装配式建筑的施工
在三维显示领域,全息显示是公认的真三维显示技术,也因其独特的波前重建技术优势被认为是显示技术发展的终极目标。随着计算机技术以及动态全息显示技术的迅速发展,计算机全息图凭借其制作简单、易于存储、用途广泛等独特的性质,逐步取代传统光学干涉法生成的全息图,解决了传统全息干涉系统复杂度高、获取困难等问题。然而计算机全息图在使用的过程中,也仍然存在着一些问题,例如散斑噪声、视场角、景深等,制约着全息显示的发
中心选址和重心选址是两种经典的选址问题,一直以来都是研究选址理论领域的坚实基础.本文基于盒马鲜生超市的选址这一实际现象的需要,同时考虑两类经典问题的要素,建立了树上三类选址问题的新模型,包括带有中心约束的1-重心选址问题、带有重心约束的1-中心选址问题和极大加和选址问题.每类问题都分为顶点型和完全型两种情况,对于顶点型的情况,选址点的范围只在顶点上;对于完全型的情况,选址点的范围可以在顶点上还可以
道路照明的目的在于为夜间在道路上驾驶车辆的人提供良好的视觉环境,使其能及时发现前方道路上出现的人或物。良好的道路照明设计可以有效地减少夜间事故发生率及事故伤亡程度,为人身财产安全提供重要保障。夜间道路照明环境的亮度一般属于中间视觉范围,目前广泛使用的研究道路照明条件下的中间视觉模型:Visibility Level(VL)模型、Relative Visual Performance(RVP)模型具
屋盖结构造型独特各异,具有重量轻、跨度大、刚度低等特点,结构对风荷载敏感,在该类结构设计中,风荷载往往起主要控制作用。屋盖结构一般为空间受力体系,自振频率密集,振型空间分布复杂,振型间具有明显的耦合效应,其风致动力特性复杂。结构节点杆件众多,所关心的目标响应也很多,传统的单目标等效方法难以实现对多个响应的等效,导致了等效静风荷载的不确定性。本文针对屋盖结构抗风设计中风致动力特性复杂、等效静风荷载不
在日常生活中,图像由于受到各种各样的影响比如,失真、模糊、噪音的干扰等,往往会丢失图像重要内容,降低了图像质量。而图像复原作为图像处理中的一个重要研究内容,通常是要进行一类不适定问题的数值求解,求解此问题最常见的方法则是基于原始图像的先验信息,引入相关正则化项,建立正则化模型。本文研究的模型为带有l1罚项的正则化模型,相比于l2正则化模型,前者对于噪音图像的复原,有更好的去噪效果。对带有l1正则化
随着我国大中城市的飞速发展,人们对于土地空间的需求日益增大,深基坑工程的开发利用也随之受到广泛关注。由于深基坑工程的复杂性,理论研究不够健全,因此工程监测成为深基坑工程安全施工的重要保障。本课题应合作单位的要求,利用传感器以及通信技术,并基于SSM框架研究并设计了一套深基坑工程监测系统,研究重点偏向于系统的整体搭建以及功能的实现。首先介绍了课题的研究背景和意义、国内外研究现状以及本课题的主要研究内
视觉多目标跟踪技术作为图像处理最热门的研究方向之一,现已被广泛应用在智慧交通、智能监控等领域。但是考虑到跟踪场景中目标尺度多样性、跟踪对象数目变化、跟踪身份误变换等问题,本文从目标检测、跟踪模型建立、目标轨迹管理、数据关联、关联线索进行深入研究,主要完成了以下工作:首先,完成多尺度行人检测算法设计。对比分析当前常用检测算法存在的不足,选择以YOLOV3为基础的检测算法框架进行改进,依据分类准确度和