论文部分内容阅读
能源危机和环境恶化使新型能源的发展越来越受到世界各国的重视,风能由于具有储量大、可再生、无污染、分布广等诸多特点,是发展最快的新型能源之一,已成为世界能源的重要组成部分。近年来,我国风电产业得到了迅猛发展,风电场数目和装机容量快速增加,但随着风电规模的不断扩大,风电并网对电网电压稳定造成的影响越来越不容忽视。本文对于风电并网相关问题的研究主要分为两方面,一方面是对风电并网系统进行静态电压稳定分析,研究风电并网对电力系统静态电压稳定性带来的影响;另一方面是电网风电接入能力的计算,应用本文提出的计算方法,以IEEE-39节点系统为例,计算电网风电接入能力。在静态电压稳定分析中,静态电压稳定临界点的求取能够提供诸如电压稳定裕度、灵敏度等重要信息,研究设计一个快速而精确的电压稳定临界点计算方法对于电力系统的静态电压稳定分析具有重要意义。连续潮流算法是求取静态电压稳定临界点的重要方法,本文在传统连续潮流法的基础上,结合最小二乘法,提出了一种改进连续潮流算法,并运用仿真算例验证了改进算法相比传统算法具有迭代次数少、计算速度快等优点。然后,应用所提出的改进连续潮流算法,计算系统的静态电压稳定裕度和灵敏度指标,采用P-V曲线法和灵敏度分析法,分析风电并网对系统静态电压稳定性产生的影响,并通过仿真研究并网点电气强度、并网线路参数、风电场负荷等因素对电压稳定性的影响。本文提出的风电接入能力计算方法结合了连续潮流算法,以节点电压不越限和静态电压稳定作为制约因素,根据风电场无功补偿配置状况计算风电接入能力。电网的风电接入能力随风电场无功补偿容量的增加而增加,但是,在风电场无功补偿容量增加到某一值时,随着风电注入功率的不断增大,风电场母线作为系统的薄弱母线有可能在电压允许偏差范围内达到静态电压稳定临界点,导致其附近的常规潮流计算不收敛,本文提出的计算方法由于结合了连续潮流算法,避免了常规潮流计算不收敛的问题,因此,能够比较准确的计算系统达到静态电压稳定临界点时的风电注入功率,即与当前无功补偿容量对应的电网风电接入能力。本文以IEEE-39节点系统为例,应用所提出的计算方法,仿真计算了风电场无功补偿容量一定的情况下,电网在三个不同并网点的风电接入能力,并且绘制出了电网风电接入能力与风电场无功补偿容量之间的关系曲线,通过曲线能够反映出一定的无功补偿容量所对应的风电接入能力以及一定的风电接入能力所需要的最小无功补偿容量。