【摘 要】
:
反问题在数学上往往是不适定的,对于数据很小的扰动将使解产生巨大的变化,因此利用数值求解非常困难。通常利用正则化算法可以得到稳定的数值解。从算法上讲,处理不适定问题的正则化算法可以分为确定性方法以及随机方法。确定性方法理论相对完整,随机方法着重讨论数据以及模型的不确定性对问题的影响。本文试图针对抛物型方程热源识别问题以及Robin系数识别问题设计高效算法,特别对解的不确定性进行量化。全文分为三个部分
论文部分内容阅读
反问题在数学上往往是不适定的,对于数据很小的扰动将使解产生巨大的变化,因此利用数值求解非常困难。通常利用正则化算法可以得到稳定的数值解。从算法上讲,处理不适定问题的正则化算法可以分为确定性方法以及随机方法。确定性方法理论相对完整,随机方法着重讨论数据以及模型的不确定性对问题的影响。本文试图针对抛物型方程热源识别问题以及Robin系数识别问题设计高效算法,特别对解的不确定性进行量化。全文分为三个部分,分别研究求解不适定问题的确定性方法和随机方法以及处理随机偏微分方程的基于ι1优化的随机配点方法。第一部分讨论基本解方法结合确定性止则化理论处理热源项分别为时间相关及空间相关的热源识别问题。基本解方法是一种真正的无网格方法,其基本思想是将问题的解写成微分算子基本解线性组合形式,避免了对区域的离散。为了能够直接利用基本解方法,首先通过变换将原问题转化成齐次多边值问题,通过该变换可以看出热源项仅为时间相关以及空间相关的热源问题的不适定程度与数值微分相当。由于所得到的线性方程组是严重病态的,本文采用离散Tikhonov正则化方法并利用GCV策略选取正则化参数对病态方程组进行处理。第二部分考虑贝叶斯推断方法在不适定问题中的应用。首先考虑在不同先验分布假设下,贝叶斯方法和经典正则化方法的关系,以及贝叶斯方法在选取正则化参数上的灵活性。然后给出不同的抽样方法对后验状态空间进行求解,并讨论抽样方法在贝叶斯方法解决不适定问题中的优缺点,以及可能采取的解决办法。接着,分析利用分层贝叶斯模型得到的增广Tikhonov方法处理一般线性问题的框架。最后将所讨论的方法具体应用到Robin系数识别以及热源识别问题中。第三部分提出结合压缩感知理论的随机配点方法。首先考虑贝叶斯随机替代模型与随机偏微分方程的关系。然后细致研究基于ι1,优化的随机配点方法,并给出该算法的收敛性结果。数值结果说明利用基于ι1优化的随机配点方法可以大大降低计算成本,为设计快速贝叶斯方法提供了新思路。
其他文献
反应扩散系统是描述客观世界的重要模型,它的研究对于理解现实世界具有重要的指导意义.特别地,由于周期解和Turing模式是现实中的重要现象,已成为动力系统的重要研究课题之,并且在物理、化学和生物等许多学科领域中得到了广泛应用.基于此,本文主要研究几类反应扩散系统的分歧周期解和Turing模式首先.考虑了时滞扩散捕食系统的分歧周期解问题.对于这一时滞系统.当时滞小于某个临界值时.其正常数平衡解渐近稳定
混沌控制与同步和复杂网络的研究都属于国际上的热点前沿课题.本文对时滞系统和复杂网络的动力学进行了研究,涉及时滞系统的混沌控制、复杂动态网络系统的同步与控制、复杂网络中的一致性问题.主要工作如下:1.深入研究了一类非线性时滞系统的混沌控制问题.这类系统在不同的时滞区域呈现出不同的动力学性质.除了基本解,在长时滞区域,还有奇倍频谐波解;在中时滞区域和短时滞区域还有两类不同的新解,这些解在非线性时滞系统
在这篇博士学位论文中,我们主要在光滑的区域Ω(?)RN中考虑具有零边值条件的一类带有奇异项的非线性反应扩散方程弱解的存在唯一性及解的长时间动力学行为。在本篇博士论文中,我们主要考虑如下带有奇异项的非线性抛物型方程初值问题整体正解的存在性,唯一性以及在序区间(ε(?)1,c(?)1s)上整体吸引子的存在性等问题,其中(?)1为-△的第一特征值所对应的特征函数.我们首先利用-△的第一特征值所对应的特征
对半群的Cayley图的研究是近年来一个十分活跃的研究领域,本文定义了半群的Cayley图的一种推广图Г图,研究了半群的Cayley图和Г图的结构和性质.设S是一个半群,T1,T2是S的两个子集,且T1与T2中至少有一个是非空集合.称一个有向图为S的Г图,记为Г,如果V(г)=S,E(г)={(u,υ)∈S×S|u≠υ,存在t1∈T11,t2∈T21,使得υ=t1ut2).当T1=T2=S时,S的
本文主要研究半群动力系统与平衡点之间的关系.讨论由半群动力系统寻找平衡点的问题,以及通过多种方式考察了构造半流正不变集的方法.具有Lyapunov泛函的半群动力系统与平衡点相应于变分理论中的下降流不变集方法的很多概念在方程中有着自然的对应关系.因而首先对这类系统建立了一些由半群寻找平衡点的方法.与下降流不同的是,系统半群在负时间上一般是不适定的,这就需要结合动力系统的一些概念和性质来克服这一困难.
节杆菌是一种广泛存在于土壤中的微生物。它可以降解污染物,并且生成生物能源例如烃。另外节杆菌是现在发现的抗逆较强的微生物中的一种。在应对渗透压胁迫以及干旱胁迫上该菌表现的更加出色。因此现今国际上对于这一类微生物的研究越来越热。然而节杆菌抗逆的分子机制仍然未知。本研究发现节杆菌受到高渗透压胁迫以后细菌的形态会由单个细菌存在形式逐渐聚集成团呈类似菌丝体状生长。节杆菌的otsA (海藻糖六磷酸合成酶)缺失
本文主要研究具有纯正断面的正则半群与分别具有恰当断面和拟恰当断面的富足半群,共分六章.第一章为本文的引言和预备知识.第二章引入左单纯正断面的概念.给出例子说明左单纯正断面是拟理想纯正断面的真推广.研究了具有左单纯正断面的正则半群并给出了这类半群的一个结构定理.第三章引入S-纯正断面的概念.给出例子说明S-纯正断面是左单纯正断面的真推广.给出了具有S-纯正断面的正则半群的一个结构定理.作为此结构定理
原子激光冷却与陷俘是发展最为迅速、成果最为辉煌的物理学研究领域之一。其中,腔冷却原子为研究超低温的冷原子提供了一个非常好的理论平台。近年来物理学家在理论、实验和数值模拟上对原子的腔冷却展开了广泛的研究。本文建立了量子微腔与三能级原子相互作用模型,通过半经典理论和量子理论对三能级原子的腔冷却做了详细地讨论。首先我们系统地回顾了原子的激光冷却的发展历史。扼要介绍了激光冷却和陷俘中性原子的发展脉络,以及
目前的实验工作主要包括两部分:一是在巴黎的LCAM实验室,完成了在掠射条件下离子-表面散射的能损的测量和大角度散射的条件下电荷转移的研究;二是在兰州大学完成了离子-原子碰撞的电荷转移的研究。本论文具体包括以下几部分:在第一章描述了离子-表面/原子相互作用的理论模型和相关概念。在第二章描述了本论文使用的实验仪器和技术。在第三和第四章,完成了1-4keV H+,He+和F-离子在金表面散射的表面沟道和
随着我国对能源安全的日趋重视,增储上产已经成为各大油田的重要目标。近年来,黄骅坳陷北大港潜山带勘探重点逐渐从低位潜山转向中高位潜山,在港北潜山石炭-二叠系目的层取得了新的突破,其中下石盒子组碎屑岩储层是河流相沉积,厚度大且砂体稳定分布,是二叠系的主力储层。但由于下石盒子组储层属于低孔低渗储层,具有孔隙度小、渗透率低、储集空间复杂、次生孔隙发育等特点,测井综合评价存在储层参数计算、饱和度评价、有效储