【摘 要】
:
随着航空发动机的性能及设计结构不断的改进和提高,新一代高性能航空发动机大量采用了整体、薄壁、复杂结构及难加工材料的零件,带来的益处是减轻了发动机零部件的重量,提高了发动机的推重比,但同时也增加了发动机的制造难度,大大增加了传统加工技术下的工艺方案设计难度与工作量,而且很多制造上的难题是传统工艺手段无法解决的。而自适应加工技术正是在这种背景下将数字化测量、多轴数控编程、快速装夹及余量优化等多项数字化
论文部分内容阅读
随着航空发动机的性能及设计结构不断的改进和提高,新一代高性能航空发动机大量采用了整体、薄壁、复杂结构及难加工材料的零件,带来的益处是减轻了发动机零部件的重量,提高了发动机的推重比,但同时也增加了发动机的制造难度,大大增加了传统加工技术下的工艺方案设计难度与工作量,而且很多制造上的难题是传统工艺手段无法解决的。而自适应加工技术正是在这种背景下将数字化测量、多轴数控编程、快速装夹及余量优化等多项数字化制造手段进行有机组合,试图解决大型复杂曲面零件在制造和修复过程中的一些技术难题。本文从几何层面提出了一种面向航空发动机核心零部件制造的自适应补偿加工方案,首先通过在机测量获取零件的实际位置和形状信息作为数据基础,然后基于测量数据提出了两种计算零件从当前实际装夹位置到所期望的理论装夹位置之间的刚体变换的算法,并详细阐述了算法的物理含义及其数学模型,其次在位置基准找正的基础上,提出了一种基于曲面参数空间等参数映射的刀路修正方法,该方法利用在机测量数据进行实际曲面的拟合,并对实际曲面和理论曲面进行参数归一化处理,最后根据等参数映射的原理修正加工刀路,使修正后的刀路能适应零件实际形状的变化,以实现对变形零件的补偿加工。为了验证本方案的可行性与实用性,本文以涡轴式航空发动机尾减机匣中的关键传动部件螺旋锥齿轮的五轴数控倒圆倒角自适应加工为例,在搭载Heidenhain530数控系统的Mikron 700U BC双转台五轴数控机床上进行了在机测量及试切加工实验,利用测量数据完成了螺旋锥齿轮的基准找正和圆角曲面变形的刀路补偿。试切结果表明,本文研究的几何自适应补偿加工方案对提高螺旋锥齿轮倒圆倒角加工的质量和效率都起到了较好的作用,本文的研究内容为航空发动机制造行业同类型问题的解决提供了一种可行的思路。
其他文献
二十世纪初期,量子力学逐渐建立。量子力学的形成和完善极大的推动了如原子物理学、固体物理学、核物理学等其他学科的发展。其中,量子力学与信息科学结合起来便形成了一门新的交叉学科——量子信息学。在量子信息学中,单光子源是量子信息技术的核心资源,特别是单光子源的制备与操纵是量子信息和量子通信技术里必不可少的一环,这使得单光子源自提出以来便引起了人们的广泛关注。在本文中,我们提出了在参量放大的光子分子系统中
近些年来,随着人类社会对氢能等清洁能源需求的增长,面向水解制氢以及二氧化碳还原等非均相催化反应机理的研究越发受到人们的重视。基于密度泛函理论(Density Functional Theory,DFT)的第一性原理计算方法可以从热力学角度对催化材料本征的电子结构以及相应的催化活性进行解析,然而DFT方法在进行催化反应的动力学研究时会受到研究体系规模和反应条件设定的限制,使人们无法准确触及到反应路径
随着先进制造技术的发展,车间调度已经成为实现智能生产的关键之一,在提高生产效率、降低生产成本等方面起着重要作用。作业车间调度问题是一种在实际生产中十分常见的车间调度问题,也是典型的NP难问题,其研究不仅具有重要的理论价值,还有重要的应用价值。基因表达式编程(Gene Expression Programming,GEP)算法能够生成并表达程序或规则,可用于构造启发式方法,进而对问题进行求解。本文研
随着社会的发展,世界能源需求日益紧张,开发新能源已经成为了迫在眉睫的任务,而核聚变能拥有洁净、安全、几乎无限储量等优势,是人类未来理想的能源之一。面向等离子体材料的性能表现是核聚变能实现所面临的关键问题之一。钨基材料由于其良好的力、热学性能被认为是偏滤器的首选材料。然而已有的实验研究发现,在聚变堆运行条件下,高注量率的低能氦离子辐照可使钨近表面层形成大量的氦泡并在表面形成“绒毛状”的纳米卷须结构,
我国作为农业大国,生物质能资源丰富,年产量可达6.5亿吨标准煤,而实际利用量仅约0.61%,因此生物质能的充分利用对替代化石能源具有积极作用。但生物质中较高含量的碱金属和碱土金属导致其燃烧过程中引起严重的锅炉结渣沾污问题,是限制生物质能发电的工业应用规模的重要因素之一。为了有效解决上述问题,本文提出了一种环境友好的CO2-水洗法对生物质进行预处理脱碱,通过对脱除效率、脱碱生物质灰熔融特性、燃烧特性
近些年来,机器视觉技术被广泛地应用于自动驾驶、机器人导航等领域。在这些领域中,视觉算法经常面对例如林荫道、隧道等明暗对比强烈的高动态范围场景。如何对类似的高动态范围场景进行成像是一个值得研究的问题。针对上述问题,本文设计了一种基于深度学习的高动态范围成像算法,主要包含以下工作:(1)研究了一种不良曝光像素数量最小化的自动曝光算法。在高动态范围场景下,该算法能够自动优化相机的曝光时间,减少不良曝光像
随着众多电子商务的迅速发展,商品的传统流通模式已经发生了很大改变。商品的传统流通是生产商(Factory)-批发商(Wholesaler)-零售商(Retailer)-消费者(Consumer),而现如今电子商务模式主要是B2B、B2C、F2C、C2C、O2O等,这些模式几乎都跳过了批发商和零售商,这也导致实体经济不景气,尤其是我们国家的四五线城市。研究发现,批发商凭借专业化优势,与零售商构建互联
近些年来,随着现代控制理论与方法越来越多地被应用到工程系统和其它重要的学科领域,其中与正常系统相对应,一类应用更广泛的系统引来了国内外许多学者的广泛关注,它就是广义系统。在系统的理论研究中为了让系统模型更接近实际系统,我们有时还需同时考虑时滞和不确定现象。目前,关于切换广义时滞系统的研究成果并不多,依然有许多理论问题和实际问题有待解决。因此,对切换广义时滞系统进行深入的探究具有非常重要的研究价值。
SmCo稀土永磁材料具有良好的磁性能,是航空、航天、信息通讯、电子、汽车、石油、国防等领域的关键功能材料。随着其应用领域的持续扩大,对性能的要求也越来越高。SmCo磁体的矫顽力与其理论值还有较大差距,依然有很大的提升空间。矫顽力是结构敏感量,与其微观结构(包括:晶粒尺寸、形貌以及晶界结构等)有密切联系。目前商业SmCo粉磁体主要由粉末冶金工艺制备,首先采用熔炼、制粉,然后将磁粉在磁场成型后,经过烧
Micro/Nano-Electronic-Mechanical system(MEMS/NEMS)传感器技术由于其微型化、集成化、智能化、成本低和效能高等优点,被认为是继微电子之后又一个对国民经济和军事有重大影响的技术领域。在生物医学、资源勘探和机械工程等领域MEMS技术已经成为不可或缺的技术之一。微悬臂梁结构是MEMS传感器中的关键元件,广泛应用于液体、气体、高温、高压等复杂环境。由于微悬臂梁