论文部分内容阅读
本篇论文主要研究如下带位势的Gross-Pitaevskii方程{-Δu(x)+V(x)u(x)+w(x)u(x)+κ|u(x)|2u(x)=Eu(x),x∈RN,u(x)∈C2(RN),其中κ∈{1,-1},E∈R,w(x)∈C∞0(RN),且为实值函数,V(x)∈C∞(RN)周期实值函数.在参数κ,以及维数N满足一定条件时,证明了上述Gross-Pitaevskii方程受扰动时: (i)在无穷远处,能量不受扰动影响,即存在常数c,使得lim|Vn|→∞1/|Vn|ψVn w(u)=c,其中Cn是RN(N≥3)中边长为n的立方体,ψVnw(u)是受扰动方程-Δu(x)+V(x)u(x)+w(x)u(x)+κ|u(x)|2u(x)=Eu(x)的局部能量泛函,其定义为ψVnw(u):=∫Vn[|▽u|2/2+V(x)|u|2/2+w(x)|u|2/2]dx+κ/4∫Vn|u|4dx. (ii)在无穷远处,方程解也不受扰动影响,即:u(x)满足受扰动方程-Δu(x)+V(x)u(x)+w(x)u(x)+κ|u(x)|2u(x)=Eu(x),则存在未受扰动周期解u0(x),使得|u(x)-u0(x)|→0,|x|→∞,其中u0(x)满足方程-Δu(x)+V(x)u(x)+κ|u(x)|2u(x)=Eu(x).