论文部分内容阅读
当今,互联网的迅猛发展造成了通信数据的高速增长,从而带来了信号传输系统对传输容量的需求不断增加。波分复用技术(WDM)以及密集波分复用技术(DWDM)的产生和发展,带来了光纤传输系统容量上的质的飞跃。而这相应地也促使人们对于具有光纤传输网络中的中继器作用的光纤放大器传输容量方面有相应更高的需求。如今,使用“扩展可用传输带宽”的方法被视为在已有的技术水准和传输干道的基础上来扩展系统传输容量最经济和有效的方式之一。在光纤通讯传输系统中,目前主要的通讯波段在C波段(1530~1570nm)和L波段(1570~1610nm)。对于C+L波段的宽带和超宽带放大主要有以下两种方式:1)将多个不同波长的泵浦进行组合构成多泵浦拉曼光纤放大器(RFA)来实现宽带放大;2)将掺铒光纤放大器(EDFA)与分布式RFA进行串联混合的方式来达到宽带放大的目的。其中,后者可以兼具掺铒光纤放大器的高增益特性和拉曼光纤放大器的在线放大特性,因此得到广泛的研究和应用。在宽带放大器的设计过程中,放大器的增益平坦度一向是作为衡量其性能的重要指标。因为该参数是波分复用系统中各信道的信号能够一致、平稳传输的保障。因此,在对放大器进行设计时,需要确保在设定的波长或者频带内放大器的增益谱是相对平坦的。而增益平坦度的程度是依赖于拉曼光纤放大器和掺铒光纤放大器的泵浦光参数以及光纤本身的特性参数的。首先,本文从拉曼光纤放大器和掺铒光纤放大器的理论模型出发,建立混合拉曼-掺铒光纤放大器的数学模型并进行求解;其次,对混合拉曼-掺铒光纤放大器增益谱平坦度的影响因素进行分析和探究,确定要优化的参数;再次,根据理论分析,设计了合理的混合拉曼-掺铒光纤放大器结构;然后,本文将混合拉曼-掺铒光纤放大器的参数设置问题转化为多参数组合优化问题,建立了关于增益平坦性的优化函数;然后,提出采用改进粒子群算法对增益谱平坦度进行优化的策略,为了提高算法的收敛结果和收敛速度,加入了遗传算法中的交叉和变异操作以及模拟退火策略;最终,用三个拉曼泵浦光与一个掺铒泵浦光的混合拉曼-掺铒光纤放大器实现了带宽为1530~1580nm(50nm)、1530~1600nmn(70nm)、1530~1635nm(105nm)波段的信号放大,而最终获得的增益平坦度均小于ldB。