论文部分内容阅读
由于聚对苯二甲酸乙二醇酯(PET)特殊的超分子结构,使其具有强度高、模量高、热稳定性好等优异的性能,但PET表面疏水,抗静电性较差,同时PET薄膜表面的活性较低,蜡质感强,与皮肤亲和性差,使其应用领域受到限制,因此对PET材料进行表面改性引起了人们的广泛关注。本课题通过戊二醛反应将胶原蛋白固定在PET薄膜的表面,以改善PET薄膜表面的性能,拓展PET基材的应用范围。本文首先采用紫外辐照接枝的方法,将丙烯酰胺接枝在PET薄膜的表面,并系统研究了丙烯酰胺的浓度、二苯甲酮浓度、紫外辐照时间、间甲酚溶胀温度以及溶胀时间对丙烯酰胺在PET薄膜表面接枝率的影响,得出丙烯酰胺的最佳接枝工艺条件为:丙烯酰胺的浓度为2mol/L,二苯甲酮的浓度为0.5mol/L,紫外辐照时间为1h,间甲酚溶胀温度为70℃,溶胀时间为2h,此条件下获得丙烯酰胺的接枝率达到最大值17.77%。并进一步采用红外光谱分析、扫面电镜能谱分析、X-射线光电子能谱分析、热重以及水接触角的测试分析等,证明了丙烯酰胺是通过化学键锚固在PET薄膜的表面;丙烯酰胺接枝的PET薄膜表面的亲水性得到了很大的改善,其表面水接触角由接枝前的80.6°降低到接枝后的20.3°。分别采用霍夫曼反应法和戊二醛反应法将胶原蛋白固定在丙烯酰胺接枝的PET薄膜的表面,系统研究了戊二醛浓度、戊二醛反应时的PH值、胶原蛋白浓度对胶原蛋白固定后薄膜表面水接触角的影响,得出在戊二醛浓度10%,胶原蛋白的浓度为20%,pH为7.0,胶原蛋白固定反应温度为0℃为最佳的反应条件,此时胶原蛋白固定后PET薄膜的表面接触角为25.2°。并采用了红外分析、扫面电镜能谱分析、X-射线光电子能谱分析以及热重分析分别对霍夫曼反应和戊二醛反应后胶原蛋白固定的PET薄膜进行分析。结果表明霍夫曼反应后胶原蛋白主要通过物理吸附固定在PET薄膜表面,而戊二醛反应后胶原蛋白主要是通过化学键固定在PET薄膜表面。采用戊二醛反应固定的胶原蛋白更为牢固,不易洗脱;热重结果显示胶原蛋白固定后的PET薄膜的热性能有所降低,PET薄膜材料的起始分解温度从364℃降低到148.9℃,但是最大的分解速率点的温度几乎保持不变,说明了PET的基体结构没有发生变化。