玉米苗期响应冷胁迫的生理及分子机制

来源 :沈阳农业大学 | 被引量 : 0次 | 上传用户:my_lyb
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
玉米(Zea mays.L)是全球重要的粮食作物,低温作为限制玉米生长、发育与产量的主要影响因素已被广泛研究。为进一步了解玉米耐冷的相关机制,本研究以抗冷基因型玉米MT和冷敏感基因型玉米MS为材料,调查分析了两不同耐冷型三叶一心期玉米幼苗在4℃低温处理4 d时的形态学和生理生化指标差异,同时利用同位素标记相对和绝对定量(isobaric tags for relative and absolute quantification,i TRAQ)方法,对低温处理后的玉米叶片进行蛋白质组学比较分析,研究结果如下。(1)不管是对于耐冷还是冷敏感玉米,持续的低温都使其玉米叶片发生卷曲甚至萎蔫,株高与根长显著降低,但MT叶片萎蔫程度比MS轻,株高和根长的降低幅度要远远低于MS。低温处理下石蜡切片的结果表明,MS和MT的细胞都出现了破损的情况,但是MS细胞的损伤程度要远远高于MT。这些结果表明MT比MS具有更强的耐冷性。(2)MS和MT在遭受低温后,相对电导率(REC)、丙二醛(MDA)和活性氧(ROS)的含量显著升高,但是MT不管是叶片还是根系REC、MDA和ROS的值均要低于MS。针对可提高植物抗逆性的指标抗氧化酶系统和渗透调节物质的分析表明,在低温胁迫下,抗氧化酶(SOD、POD、CAT和APX)活性和渗透调节物质(脯氨酸、可溶性糖和可溶性蛋白)含量均显著上升,且MT的抗氧化酶活性和渗透调节物含量明显高于MS。这些生理生化结果也表明抗冷基因型玉米MT相较于MS具有更高的冷耐受性。(3)针对MT与MS在低温胁迫下差异蛋白的GO分析、KEGG通路富集与蛋白质互作分析表明,低温胁迫下通过以下代谢途径的改变使得MT比MS具有更强耐冷性:(1)碳水化合物和能量的代谢;(2)氨基酸的转运与代谢;(3)抗氧化能力代谢;(4)转录后调控和修饰。获得了一批玉米抗冷相关的候选蛋白,并进行了转录水平的验证,本研究可为后续进一步分析验证这些蛋白在玉米抗寒中的作用提供参考价值。
其他文献
副溶血弧菌是一种革兰氏阴性嗜盐菌,广泛分布于江河口、海洋环境以及多种水产品中,食用副溶血弧菌污染的食物后会引起腹泻、呕吐、发热等症状,重症患者还有可能出现脱水、休克昏迷,甚至死亡。尤其在一些沿海城市,由副溶血弧菌引起的食物中毒事件占食源性致病菌引起中毒总数的60%以上。因此,建立快速、准确的副溶血弧菌检测方法对该菌防控起到重要作用。等温多自配引发扩增(Isothermal multiple sel
学位
番茄(Solanum lycopersicum)作为现代研究中重要的模式植物以及重要的蔬菜作物,其产量和品质是人们关注的重点,而番茄的产量和品质与蔗糖代谢有着密不可分的关系。TOR作为一种信号分子,通过对多种信号的响应,调节植物的许多生理过程,从而调节植物的生长发育,是植物生长和代谢中的重要因子。但是TOR信号对番茄蔗糖代谢的调控还缺乏系统的研究,因此本研究首先通过外施TOR抑制剂AZD8055和
学位
类胡萝卜素合成过程需要很多酶进行催化反应,八氢番茄红素合成酶/番茄红素环化酶(CrtYB)与八氢番茄红素脱氢酶(CrtI)是众多关键催化酶中较为关键的两种酶,它们主要参与类胡萝卜素下游合成途径中重要前体物质的生成,具有重要意义。本课题组从草莓果实上分离发现并保藏的一株掷孢酵母(Sporidiobolus pararoseus)野生型菌株,代号NGR,菌保中心编号:CGMCC 2.5280,前期试验
学位
随着迈进新时代,外来植物入侵问题愈发严重,对经济发展和自然环境造成的损害愈发严重。氮素是植物生长不可或缺的营养元素,外来入侵植物和土壤氮转化微生物之间的互作关系在其入侵过程中发挥至关重要的作用。本实验室的前期研究发现,偏好硝态氮的外来入侵植物瘤突苍耳(Xanthium strumarium)全株水浸提液能显著提高土壤硝化速率和土壤硝氮含量;而偏好铵态氮的本地植物苍耳(X.sibiricum)则不能
学位
玉米((Zea mays L.))学名玉蜀黍、禾本科,原产于南美洲以及中美洲,是重要的粮食作物,在世界范围内大面积的种植。生殖发育时期花粉发育是否正常直接影响玉米的受精和结实。因此,对玉米花粉发育调控基因进行研究具有重要的理论和实践意义。实验室前期鉴定到一个玉米花粉败育突变体zmstk2。ZmSTK2基因编码类受体蛋白激酶,为花粉特异性基因,但是其表达特性、决定花粉特异性的顺式作用元件以及ZmST
学位
卡巴呋喃是以乙酰胆碱酯酶为作用靶点的氨基甲酸酯类农药,因其高毒性和高残留,在甘蓝、番茄、甘蔗等瓜果蔬菜的使用中已被列为禁用农药。由于其防治玉米幼苗期害虫的高效性,在我国东北地区仍被用作玉米种衣剂广泛使用。微生物是修复农药残留的最有效方式。已有研究报道了部分降解卡巴呋喃的菌株,但这些菌株功能相对单一,实际运用受限。因此,探寻高效稳定降解卡巴呋喃的菌株及其作用机制仍是研究热点。本论文从玉米根际土壤中筛
学位
CRISPR/Cas技术作为一种简单、廉价且高效的基因编辑技术,深受科学家的追捧,且在生物相关领域被广泛应用,并取得显著成就。碱基编辑器作为“基因魔剪”在遗传疾病的治疗方面有很大的发展前景,但由于被作为哺乳动物细胞标准递送系统的r AAV对所递送的DNA大小有一定的限制。另外,现有的碱基编辑器编辑效率不高,编辑窗口不理想。针对上述问题,本研究设计并创建了分别基于Intein与PB1-PB2的分离式
学位
百合是百合科(Liliaceae)百合属(Lilium)多年生草本球根花卉,其因花大且艳丽,具有独特的香味而广受人们的喜爱,是世界五大鲜切花之一。中国是世界百合起源中心,然而我国百合产业发展缓慢,远源杂交障碍及克服技术缺乏严重阻碍了我国百合新品种选育。OT(Oriental hybrids×Trumpet hybrids)杂种系百合具有着抗性强、花大、具有独特的香味等优点,然而其侧向生长的花朵有碍
学位
根毛的生长和发育增加了根的表面积,提升了根从外界环境中对水分和营养物质的吸收能力,同时在植物适应干旱胁迫下起到极为重要的作用。微丝骨架作为细胞骨架的重要组成部分,其对根毛生长的调节起到重要作用。然而,在干旱诱导根毛生长中微丝的动态变化及其调控机制尚不清楚。有研究表明,拟南芥微丝捆绑蛋白AtVLN4具有正向调节根毛生长作用。本实验室前期发现微丝解聚因子AtADF11具有负向调节根毛生长作用,并且在干
学位
玉米(学名:Zea mays L.)是一种重要的粮饲兼用作物,在我国各地均有种植。在玉米生长发育过程中,常常受到风力等作用发生倒伏,而且各种病害严重影响玉米产量和品质。有研究表明,植物细胞壁的机械强度与植株的抗病性和抗倒性有关,而NAC类转录因子在植物次生壁的形成中发挥重要作用。实验室前期在玉米中筛选出一个NAC类转录因子基因ZmNAC19,该基因在叶片中高表达,并通过转农杆菌介导的方法将该基因导
学位