论文部分内容阅读
蛋氨酸是人和动物必需氨基酸中唯一含硫的氨基酸,被广泛用于制药行业、食品工业和饲料行业,2013年全球需求量约为80万吨(超过60万吨被用作饲料添加剂)。目前市售的蛋氨酸主要是丙烯醛化学方法合成,以石化原料甲硫醇、丙烯醛和氰化氢合成的蛋氨酸为DL消旋体混合物,需要酶法催化才能得到应用在医药行业的L-蛋氨酸。虽然动物能够吸收DL-消旋体混合物,但是最新的研究表明,L型比D型蛋氨酸更容易被消化吸收。相较于化工合成蛋氨酸高能耗、高生产安全要求(如剧毒的氰化物原料、中间体和废物),微生物能够利用可再生廉价原料,在常温下生产L-蛋氨酸,属于环境友好型模式。在过去的几十年里,虽然各国学者们在产L-蛋氨酸菌株选育和育种方面做了大量的工作,但是筛选到的野生型和人工诱变的微生物生产能力比较低,不能满足工业生产的需要。随着对大肠杆菌(Escherichia coli)L-蛋氨酸合成机制的深入了解,用理性设计的策略,通过代谢工程的手段去改造微生物生产L-蛋氨酸受到各国学者的青睐。本论文中,分析了L-蛋氨酸合成途径的反馈抑制、合成瓶颈和生长抑制,通过挖掘基因功能、优化合成途径、修饰运输途径等策略针对E.coli W3110进行系统代谢改造,逐步提高L-蛋氨酸的产量,并探索L-蛋氨酸合成途径的一些新的调控机制,为后期研究提供理论依据。L-高丝氨酸是L-蛋氨酸的前体和碳骨架,以E.coli W3110为出发菌株,通过代谢工程策略构建了一个高产L-高丝氨酸的菌株。具体策略如下:敲除大肠杆菌基因组lysC、thrBC和metA基因,阻断赖氨酸碳代谢流竞争途径,以及苏氨酸和蛋氨酸分解途径;为了增强L-高丝氨酸合成途径的碳代谢流,研究了过量表达lysC、thrA和metL对L-高丝氨酸产量的影响,并表征了L-高丝氨酸对天冬氨酸激酶(AK)AKI、AKII和AKIII的影响,结果表明过量表达metL基因,能够克服L-高丝氨酸合成途径的限速步骤;过量表达rhtA基因,增强向重组菌胞外分泌L-高丝氨酸速度,解除对菌体生长抑制作用和进一步提高L-高丝氨酸的生产能力;鉴定出TdcC是负责向胞内运输L-高丝氨酸转运蛋白之一,敲除大肠杆菌基因组tdcC基因,弱化重组菌胞外L-高丝氨酸被吸收到胞内的效率;得到重组菌HM5(pBRmetL–pNrhtA),15-L发酵罐补料-分批发酵44 h L-高丝氨酸产量达到39.54 g·L-1。为了增强L-蛋氨酸合成途径的碳代谢流和解除met调节子的负调控,依次敲除了thrBC、lysA和metJ基因。通过pN25控制过量表达metAFbr(Fbr,抗反馈抑制)、malY克服了E.coli L-蛋氨酸生物合成途径的障碍。另外,通过弱启动子metK84p替换metKp弱化E.coli Me03 SAM合成酶的表达,过量表达解除反馈抑制的HTS,也能够解除γ-胱硫醚生成高半胱氨酸的合成障碍,并且能够显著增加L-蛋氨酸的产量。比较了不同方式阻断苏氨酸合成途径,发现只敲除thrC基因比同时敲除thrBC基因的重组菌具有更好的生长性能和生产L-蛋氨酸能力。通过上述的代谢工程策略,以E.coli W3110为出发菌株,构建的E.coli Me06(pETMAFbr-B-Y)重组菌500 mL摇瓶和15-L发酵罐L-蛋氨酸产量分别从0 g·L-1提高到0.4和3.5 g·L-1。过量表达了metE、metF和metH,以增加高半胱氨酸的甲基化效率。解除metE和metH的转录调控,过量表达MetE或MetH能够显著提高L-蛋氨酸的产量。与MetE相比,MetH具有更高的甲基化效率。研究了metH不同表达水平对L-蛋氨酸的影响,发现metH的表达量过高或过低都会造成L-蛋氨酸产量的下降。通过替换E.coli Me06基因组上metH自身启动子为组成型启动子pN25,可以解除其转录调控,经15-L罐发酵,Me08(pETMAFbr-B-Y)L-蛋氨酸产量能够达到5.43 g·L-1。构建MetD运输系统缺失突变株,研究该运输系统功能缺失对E.coli W3110 L-蛋氨酸吸收和积累的影响。MetJ阻遏调控解除后,metNIQ的表达量和L-蛋氨酸吸收速度显著增加。通过敲除E.coli W3110和Me05的metNIQ,MetD运输系统缺失导致L-蛋氨酸吸收速度下降。另外,分别敲除用于产L-蛋氨酸基座菌株Me06的metNIQ基因簇、metN、metI和metQ。生长曲线和摇瓶发酵结果表明,metI的敲除促进菌体的生长和L-蛋氨酸的合成,L-蛋氨酸的产量从0.39 g·L-1提高到0.45 g·L-1,提高了15.4%,L-蛋氨酸产率从0.14 g·g-1 DCW提高到0.15 g·g-1 DCW。通过tac启动子本底表达解除yjeH的调控,低水平表达YjeH能够降低胞内的L-蛋氨酸的浓度,L-蛋氨酸产量从0.45提高到0.58g·L-1。结合修饰L-蛋氨酸向胞内吸收速度、增强向胞外L-蛋氨酸的运输速度和甲基化效率,Me15(pETMAFbr-B-Y/pKK-tacyjeH)补料-分批发酵L-蛋氨酸产量提高到7.19 g·L-1比Me08(pETMAFbr-B-Y)提高了32.4%。为了增加半胱氨酸的供应,通过逐个解除E.coli半胱氨酸合成途径基因的调控,发现增强cysC、cysE、cysH和cysK基因表达量,能够提高L-蛋氨酸的合成效率。同时解除cysE和cysC的调控,增强半胱氨酸的硫还原和碳代谢流能够进一步提高E.coli L-蛋氨酸产量和产率。结合增强L-蛋氨酸向胞外运输,重组菌Me15(pETMAFbr-B-Y/pKK tacyjeH-cysE-C)摇瓶和发酵罐补料-分批发酵L-蛋氨酸产量分别增加到1.16和10.10g·L-1。