论文部分内容阅读
随着计算科学及计算机软硬件技术的发展,以ANSYS、MARC等软件为平台开发的轧制过程有限元分析程序,可以真实地模拟板材轧制的整个过程,但是存在计算效率低、计算时间长等缺点,不能满足在线轧制要求的高效性.实现高速仿真和在线控制,解决轧制过程的基础科学问题,具有重要的实际意义.本文主要研究内容如下:
(1)Newton-Raphson法(简称N-R法)是板材轧制过程中求解无约束优化问题的常用算法.跟踪N-R法的计算过程,发现搜索阻尼因子α的计算量大,对整个数值模拟的迭代次数和计算效率影响很大.而信赖域算法具有强迫Hessian矩阵正定,不需要一维搜索等优点,本文在此基础上提出了一种改进算法--信赖域和牛顿混合迭代法.
(2)信赖域和牛顿混合迭代法,先利用信赖域算法进行全局搜索,然后信赖域算法和N-R法奇偶交替使用,很好的结合了信赖域算法和N-R法各自的优点.本文给出了混合迭代法的具体计算步骤和程序框图,并证明了该算法具有全局收敛性和超线性收敛速度.
(3)对N-R法、信赖域算法、信赖域和牛顿混合迭代法的计算结果进行了比较,结果显示:信赖域算法与N-R法相比,收敛速度快,但在轧制力和能耗率泛函极小值方面精度较低;混合迭代法能达到与N-R法相同的计算精度,且缩短了计算时间.
(4)验证了混合迭代法的有效性.用混合迭代法和N-R法计算某钢厂的现场轧制数据,与N-R法相比,混合迭代法计算的轧制力与现场实测轧制力有很好的一致性,且收敛速度大幅度提高,缩短了计算时间.