论文部分内容阅读
在自然界的金刚石中有一种由氮-空位(Nitrogen-Vacancy)形成的缺陷,这种缺陷在捕获一个自由电子以后形成的缺陷叫做(1~-中心,因为带这种缺陷的金刚石呈现出红色,因此简称为NV色心。NV色心具备优良的光学特性,是一种性能优异的单光子源,在室温下有良好的电子自旋特性,因此NV色心广泛应用于量子计量、量子信息处理(QIP)和量子磁场探测与成像。本文主要研究基于金刚石NV色心的量子微波磁场探测与成像系统,探索基于金刚石NV色心磁光效应的矢量微波场重构和成像方法,并研究该系统在电磁兼容领域的应用。本文利用金刚石NV色心优异的量子光学性能,重点从提升系统的探测效率、提升系统探测灵敏度,拓展系统的探测频率,三个角度入手开展量子微波场成像系统的研究。主要研究内容如下:1、在提升系统的探测效率方面,本文探索了基于CCD相机和富含NV色心的金刚石薄膜的宽视场快速微波场成像方法。研究了基于科勒照明实现快速微波场成像的方法,采用多通道脉冲发生器同步CCD、激光开关、微波开关和微波源。采用参考帧和图像帧之间的差分测量方法,降低了测量噪声;每帧集成N个重复序列进一步提高了信噪比。本文开发了一种软件扫描微波成像方法,通过对CCD相机的图像进行逐点软件分析,绘制出每一像素点的光探测磁共振(ODMR)谱或拉比振荡(Rabi)曲线,进而通过拟合得到每个像素点对应的微波磁场的强度,进而通过全矢量微波场重构公式计算出包括振幅和相位信息在内的微波磁场矢量。该全矢量微波场重构公式由可测量到的四个NV轴上的左右圆极化微波磁场分量推导出。本文通过对一个微型螺旋天线的测量,验证了整个实验系统的正确性。2、在提升系统探测灵敏度方面,本文研究了一种高灵敏度基于幅度和频率调制技术的金刚石NV色心微波场量子测量方法。开发了一种基于调幅调频光探测磁共振技术的微波磁场探测方法和实验系统,并提出了相应的表面电流重构算法。本文制作了一种特殊的金刚石微波探针放置在微波器件或天线的表面探测微波场;该探针是将金刚石颗粒附着在光纤顶端制成的,对微波场无扰动。该系统具备很窄带宽的滤波器过滤掉大部分噪声,该方法具有较高的检测灵敏度;虽然该方法采用扫描法实现了微波场的测量和成像,但该方法大大缩短了每个扫描点的测量时间,可达到毫秒级。利用金刚石探头中不同朝向的NV色心可以测得三维矢量磁场信息。利用三维矢量磁场信息可以更准确地重构天线表面电流的分布。本文通过对分形天线进行测量,验证了实验系统的正确性。3、在拓展系统的探测频率方面,本文探索了一种高分辨率、非破坏性宽带微波场成像方法。通过研究使用富含NV色心的金刚石传感器,在静态偏置磁场的情况下实现了对微波场的非破坏性宽带宽探测。该系统的探测灵敏度可达15 MHz。空间分辨率受制于金刚石探头的尺寸和位移平台的精度,可达微米级别。该技术是基于NV色心在532 nm的绿色激光泵浦下,在偏离轴向的静态磁场偏置下,外部的AC磁场可以调控金刚石NV色心的荧光强度的特性而开发的。本系统的最小测量灵敏度可达0.1高斯,探测灵敏度主要受限于雪崩光电二极管的背景噪声。本文通过对一个圆形的平面螺旋天线进行进行测量,验证了实验系统的正确性。本文还利用该量子磁场成像系统对一款Ga As衬底MMIC低通滤波器芯片进行芯片近场成像,并就芯片成像所呈现的电磁兼容问题进行了分析。最后,本文对上述微波场成像系统的研究进行了总结,对微波场成像系统的后续研究进行了展望。