论文部分内容阅读
水是生命不可缺少的物质,获得安全、可靠、充足的饮用水对人类健康和福祉更是至关重要。随着人们生产生活水平的提高,水资源短缺问题日益突出,进入水中的污染物种类也越来越多,而人们对饮用水水质要求却更加严格,基于以上原因,水处理工作者一直致力于开发更加先进的水处理工艺来改善水厂出水水质,许多地区为节流也逐渐形成了地下水、地表水、外调水库水等多水源供水格局。这些方法都极大缓解了水资源短缺问题并提高了净水厂出水水质,可是,伴随着这些技术的迅速发展,一系列由于饮用水水质恶化而引发的“黄水”问题仍屡见不鲜。长期以来,人们主要关注饮用水出厂水水质,却鲜有对其输配水过程的系统研究,尽管净水厂革新了工艺,出厂水水质得到明显提高,但是改变供水水质却引发了水质在供水管网中的恶化,造成用户终端“黄水”现象严重。相关研究发现,当切换水源,供水水质发生变化时,会破坏原管网中的平衡,导致原有管网中积累的有机物释放和生物膜脱落等一系列物理、化学和生物学变化,从而极大威胁用水安全。因此,考察水源切换对管内水和生物膜产生的潜在影响,以期正确评估终端出水安全性具有重要意义。本文以供水系统管网中常用的球墨铸铁管、铜管、不锈钢管、聚乙烯和聚氯乙烯等五种给水管材材质以及玻璃材质的试片作为通水载体,在高硼硅玻璃瓶中进行水源切换模拟管网实验,对管材先后提供两种不同的水质,分别为实验室自来水龙头出水和自来水经五级深层过滤处理后出水,每两天进行新鲜水样换水以此模拟实际供水在管网中的水力停留时间,经过两个多月的培养后,切换供水,来揭示水源切换前后反应瓶中管内水和生物膜的生物量和相关元素的潜在变化,并通过对比不同管材对水源切换的差异,以期寻找较为合适的环保型管材,提高饮用水水质。基于以上模拟实验,利用电感耦合等离子体质谱仪和流式细胞仪快速检测水源切换前后管内水样和生物膜的理化指标和细菌浓度,分析供水水质变化对不同管材管内水和生物膜的影响,结果表明:(1)在第一阶段(水源切换前),管内水中的DOC值在最初一周内呈下降趋势,某些含碳量较高的管材管内水的DOC值随后会有微小的升高,表明管材自身所含物质向水体中发生了迁移。水源切换后,不同管材管内水的DOC均比进水浓度高,说明除管材自身碳的迁移外,还发生了生物膜及有机沉积物的脱落。(2)除PVC管材外,其余管材管内水的Ca元素浓度与进水浓度持平,即Ca元素浓度不受水源切换的影响。不同管材管中水的Fe元素浓度和Al元素浓度在水源切换后均有所提升,表明各管材都在一定程度上释放了Fe和Al元素。(3)不同管材在第一阶段(水源切换前)培养过程中,管内水的细菌浓度相较于进水均呈升高趋势,不同管材中水样细菌含量大小为:CI>Cu>PVC>SS>PE>G。各管材单位面积微生物量高低为:PVC>CI>SS>G>PE>Cu。(4)第二阶段(水源切换后),所有管材管内水的微生物量显著升高,约为进水浓度的10倍,各管材生物膜生物量与第一阶段相比都有不同程度的减少,但水源切换对微生物的活性没有影响。(5)对比水源切换前后不同管材管内水中生物量变化大小可得出:Cu>CI>PVC>SS>G>PE,说明应对水源切换时,铜管更容易受冲击,PE管最稳定,因此PE管材是应对水源切换较为理想的供水管材料,不锈钢管是较为理想的金属材料。