【摘 要】
:
格子玻尔兹曼方法(LBM)是一种用于流体流动建模的介观方法.本文选择FEM和LBM耦合来研究不可压缩稳态Navier-stokes问题并提出了两种算法:LBM-FEM的二重网格和FEM-LBM的局部并行算法.LBM-FEM的二重网格算法主要是利用了LBM在处理稳态流时对初值不敏感的特性和有限元两重网格的思想.首先将LBM应用在较大的格子上计算稳态解,随后将其解插值到相应的细网格的有限元空间中,接着
论文部分内容阅读
格子玻尔兹曼方法(LBM)是一种用于流体流动建模的介观方法.本文选择FEM和LBM耦合来研究不可压缩稳态Navier-stokes问题并提出了两种算法:LBM-FEM的二重网格和FEM-LBM的局部并行算法.LBM-FEM的二重网格算法主要是利用了LBM在处理稳态流时对初值不敏感的特性和有限元两重网格的思想.首先将LBM应用在较大的格子上计算稳态解,随后将其解插值到相应的细网格的有限元空间中,接着在细网格上,用FEM的一步牛顿迭代格式,最终得到稳态N-S的解.基于此算法,对稳态的不可压缩流动问题(Taylor Green流,方腔流等)进行数值模拟,并将其与有限元经典的二重网格算法进行对比,证明算法的有效性和可行性.FEM-LBM的局部并行算法的主要思想是利用FEM构造出LBM子区域的人工边界,接着使用LBM在各个子区域内独立并行求解.首先将整个区域分解为多个子区域.用FEM在整个区域的粗网格上计算出LBM所需的边界宏观量,将宏观量插值到LBM所在的细格子中,接着利用重构算子,将宏观量重构为LBM所需要的分布函数并在子区域中用LBM分别独立并行计算,并得到稳态N-S的解.最后基于此算法对稳态的不可压缩流动问题(Taylor Green流,方腔流等)进行数值模拟.
其他文献
近年来,水中有毒有害有机污染物的种类和含量日益增多,对生态环境和人体健康产生巨大危害。印染废水因其色度大、浓度高、可生化性差等特点成为水污染治理的难题,而卡马西平因其结构复杂、性质稳定、难以降解的特点,同样引起众多研究者的关注。目前的处理方法对于这两类难降解有机污染物的处理效果不佳,而基于硫酸根自由基的高级氧化技术则表现出了较大的应用潜力。但目前活化过一硫酸盐(PMS)的催化材料仍存在不足之处,因
抗生素作为一种新兴污染物随着人类活动频繁出现在各种天然水系统中,然而传统污水厂处理模式并非针对且难以有效去除新兴污染物,另一方面,抗生素耐药性正严重威胁着水资源的可持续性和人类健康,因此,对抗生素的高效去除方法逐渐受到人类的重视,其中过硫酸盐高级氧化技术对于控制水中新兴污染物更具应用前景,在众多活化过硫酸盐的方式中,过渡金属非均相催化剂活化因高效稳定、成本低、条件简单、可回收等优势受到广泛关注,针
随着经济水平的提高,人们对室内环境的需求逐步提升,而改善室内环境所带来的能耗也迅速增长。风扇通过营造气流,提高人体周边的风速来改善室内环境,由于其价格低廉、使用方便、节能省电等优势而被广泛使用。由于睡眠状态下的人体生理参数不同于清醒状态下,人体在睡眠状态下的并不能够有意识地改变热环境。将清醒状态下得出的理论直接复制到睡眠状态下并不合理,但风扇在睡眠状态下的应用研究较少,睡眠状态下使用风扇还缺乏科学
随着全球化石燃料逐渐枯竭和环境排放问题逐渐加剧,纯电动汽车凭借零排放的特点在世界各国受到越来越多的重视和发展。然而,由于现有纯电动汽车技术无法彻底解决续航里程短、充电过程长、电网冲击大等问题,目前其大面积推广仍面临困难。采用换电技术对电动汽车的动力电池包进行更换作为一种上述问题的可行解决方案已逐步受到汽车、电力企业的重视。分析发现,现有换电技术通常需要占用固定土地以建立换电站,用地成本高,无法大面
为适应社会的不断进步、经济的高速发展、能源短缺和环境污染的压力,电动汽车的研究已经受到广大研究者的关注。其中,线控四轮独立驱动电动汽车由于其轮毂电机具有比发动机更快、更精确的转矩响应,转矩转速易于测量,通过线控技术可直接实现各车轮驱动、制动、以及转向的独立控制,便于对ABS/ESP/DYC/TCS等底盘电控系统的集成与协调等多项优势,成为汽车动力学研究及车辆技术发展的趋势。正因如此,其安全性,可靠
随着航天技术的发展,航天运载器的轻量化设计愈显重要。碳纤维增强树脂基复合材料具有高比强度、高比模量以及耐腐蚀等优点,可替代传统的金属材料用于航天飞行器结构中,减重效果明显。液氧贮箱作为航天运载器的重要组成部分,承担着运输、存储低温燃料的功能,但具有结构体积大、质量占比高的问题,发展复合材料液氧贮箱,对航天飞行器整体结构的减重意义重大。液氧贮箱用复合材料需要在低温下承受荷载,对其低温力学性能具有较高
随着世界各国对环境问题的日益重视,如何有效处理污水成为科研领域的热门课题之一。光催化技术(Photocatalysis,PC)在使用过程中处理效率高、清洁无污染,受到科研工作者的青睐。PC技术能够产生具有强氧化性的活性粒子,如空穴(h+)、羟基自由基(·OH)、超氧自由基(O2·-)等,这些活性粒子可以无选择地破坏有机污染物的化学结构,并将其降解为二氧化碳(CO2)、水(H20)等无机小分子。光催
自动驾驶是汽车行业发展的一个重要方向,它能够改变人们的出行方式,引起社会的重大变革。目前世界各国纷纷出台国家战略,企图抢占自动驾驶的制高点,推动国家社会经济发展。目前单车道的智能化如ACC(自适应巡航)、IACC(集成式自适应巡航)、LKA(车道保持辅助)等功能已经逐渐普及,智能汽车正从单车道的Lv.2级往多车道的Lv.3级自动驾驶发展。如何在动态交通环境下实现智能的换道决策以及安全高效舒适的换道
时滞微分方程在生态学、工程学等众多领域中都有着非常广泛的应用,因而研究时滞微分方程具有重要的理论意义和实际意义.其中关于时滞微分方程周期解的相关研究是比较重要的研究课题之一.本文基于Kaplan-Yorke法,研究了一类含参时滞微分方程的6ri/6ki-i(6ri/6ki’+i)-周期解和3ri/3ki-i(3ri/3ki’+i)-周期解的存在性及个数问题.本文首先介绍了时滞微分方程的研究背景及相
本文研究在内部边界随机的情况下求解Bernoulli自由边界问题的数值方法,通过截断的Karhunen-Lo(?)ve展开法对边界上的随机变量进行参数化,采用随机配点法对形状梯度进行高维积分估计.基于目标泛函的梯度,用水平集方法表示所求的最优自由边界,基于有限元方法离散状态方程和伴随方程,最后我们进行了相关的数值实验,并与确定性Bernoulli自由边界问题进行比较,结果表明随机性对自由边界问题具