论文部分内容阅读
柴松是一种形态特征与油松十分相似的松属植物,其仅分布于陕西省富县和尚塬林场的大麦秸沟中上部,纯林面积约337.3 ha。与油松相比,柴松具有诸多优点,如树体高大通直、天然整枝好、天然繁殖能力强、耐瘠薄、适应性强、单位面积蓄积量大等,被誉为黄土高原地区的珍贵遗传资源,因此,对其应该进行积极的保护并合理的开发利用。然而,关于柴松在松属物种中的分类地位问题在学术界尚无定论,加之对其遗传多样性现状也缺少了解,因此制约了人们对这一优良遗传资源的系统研究和有效保护利用。本研究选取柴松与油松及其变种(黑皮油松和扫帚油松)和近缘种(巴山松和马尾松)各1个较大的自然居群,分别从DNA分子标记分类、形态学分类、解剖学分类以及化学分类等4个层面上对柴松的分类地位进行了探讨。另外,本研究还从形态和DNA分子层次上对柴松仅有2个居群的遗传多样性现状进行了分析。所得主要研究结果如下:1.对前人在松属其它树种中已开发出的82对SSR引物进行了筛选,从中成功筛选出13对多态性高、特异性好、重复性强的SSR引物用于柴松分类地位研究。应用筛选出的13对SSR引物对上述6树种153个单株的基因组DNA进行扩增。13对SSR引物共检测到84个等位变异,每个位点的等位变异数从3个到15个不等,平均为6.50个,多态性信息含量(PIC)从0.293到0.875,平均值为0.600。对扩增所得数据分别进行Structure分析、NJ邻接关系树分析(以树种和单株2层面)和PCo A主坐标分析。3种分析方法所得结果一致表明巴山松和马尾松来源于两个不同的物种,而柴松、油松、黑皮油松和扫帚油松为同一物种(油松)。2.依据形态特征和木材解剖特征测量计算所得数据以及松脂和针叶精油中各化合物的含量数据对6树种进行聚类分析和PCA作图。以各指标均值对6树种进行聚类分析的结果显示柴松与油松始终优先相聚在一起,其余4树种则按照不同顺序与两者相聚;以各指标原始数据对参试的各单株进行聚类分析和PCA作图的结果显示,6树种各单株杂乱无章的相互间参杂着聚在一起,关系十分复杂。此现象表明表型性状特征、木材解剖特征和化学成分特征在上述6树种间无树种的特异性,无法将彼此区分。3.对柴松与油松间各形态特征、木材解剖特征、松脂化学成分特征以及针叶精油化学成分特征进行单因素方差分析,分析出两树种间存在的极显著或显著差异的相关指标,它们是针叶的大小与形状、雄球花的大小与形状、球果的大小、形状和重量、种鳞的长度、种翅的大小、种子的大小和重量、侧枝与主干夹角的大小、胸高形率的大小、木材中树脂道的大小、木材中管胞腔直径的大小、木材中管胞壁腔比的大小、木材中早材和晚材宽度的大小、松脂中12种化学成分(3-蒈烯、35号未知二萜、长叶松酸、枞酸、7,13,15-枞三烯酸、56号未知二萜、58号未知二萜、β-蒎烯、异海松酸、异长叶松酸、新枞酸、45号未知二萜)含量的多少、针叶精油中9种化学成分(α-石竹烯、γ-依兰油烯、α-蒎烯、斯巴醇、桉叶醇、喇叭醇、兰桉醇、α-杜松醇、西柏烯)含量的多少。另外根据前人的相关研究报道,两树种还在树皮形状与裂纹、针叶颜色、侧枝与主干间的夹角大小(与本研究相同)、球果形状与大小(与本研究相同)、树干通直度、材质坚硬度、天然整枝好坏、茎中树脂道数目与大小以及髓射线数目、针叶中维管束大小、针叶中内皮层大小与所占比例、针叶中树脂道多少与总面积、针叶的树脂道中泌脂细胞多少、花粉粒大小、花粉粒体的大小、花粉粒气囊大小及萌发孔(沟)宽等诸多方面亦存在显著或极显著差异。依据本研究SSR分子分类结果和上述各项种下分类依据,结合种下各分类单元概念的内涵,认为将柴松归为油松的变种较为适宜。另外,文中根据柴松的分类地位(油松的变种)结合柴松林的特点以及相关历史事件对柴松的起源亦进行了探讨。4.研究通过对柴松现有2居群100个单株的17个表型性状的多样性进行研究分析,发现17个表型性状中除种翅长仅在居群间存在显著差异外,其余16个表型性状在柴松居群内、居群间皆存在极显著差异。柴松针叶、球果、种鳞、种翅和种子5类表型性状的变异系数(CV)分别为11.34%,12.80%,14.06%,19.47%和30.16%,亦表明柴松表型性状的多样性水平较高。柴松针叶、球果、种鳞、种翅和种子的17个性状的平均表型分化系数Vst为45.03%,说明柴松两居群的表型变异在居群间的贡献占45.03%,居群内的贡献占54.97%,居群内多样性大于群体间多样性。柴松17个表型性状间大多呈现显著或极显著的正相关,其中针叶长、针叶宽、球果长、球果径、球果干重、种鳞长和种翅长为柴松易测定和重要的表型性状。13对SSR引物共检测到74个等位变异,每个位点的等位变异数从3个到10个不等,平均为5.69个,多态性信息含量从0.415到0.865,平均值为0.629;Nei’s基因多样性指数(H)树种水平为0.3956,Shannon信息指数(I)在树种水平上为1.0021;居群水平上,Nei’s基因多样性指数(H)和Shannon信息指数(I)体现出的趋势相一致,表明柴松两居群中居群1(阳坡居群)的多样性水平略高于居群2(阴坡居群);两居群间的基因分化系数(Gst)为0.0232,Shannon’s居群分化系数((Isp-pop)/Isp)为0.0270,可见在柴松总的遗传变异中有不足3%的遗传变异存在于居群间,有超过97%的遗传变异存在于居群内;分子方差分析(AMOVA)所得结果与基因分化系数(Gst)和居群分化系数((Isp-pop)/Isp)所得相符,同样指出有2.67%的遗传变异存在于居群间,97.33%的遗传变异存在于居群内。文中依据柴松的遗传多样性现状结合柴松林的特点对其提出了相应的保护策略。