论文部分内容阅读
我国是丘陵山地大国且山地地形复杂,目前专用于丘陵山地区的拖拉机底盘相对缺乏,而普通的拖拉机在丘陵山地作业会出现动力不足,易翻倾,转弯半径大,作业效率低等问题,很难适应丘陵山地区的复杂的工作环境,无法满足丘陵山地的作业需求。因此研制一种适应性强,稳定性高的丘陵山地拖拉机底盘意义重大。本文通过分析比较国内外丘陵山地拖拉机底盘的机构设计的优势,设计了一种具有可自适应调平多功能作业的动力底盘。主要研究结论如下:(1)针对丘陵山地的地貌特征,确定丘陵山地拖拉机底盘的总体技术方案和主要技术参数,该底盘配套动力为58.8kw(80马力),底盘轴距为1800mm,轮距为1296mm,最低离地间隙为312mm。传动系统采用机械传动,行走系统为四轮驱动形式,转向系统可实现全液压四轮异相位转向,底盘可实现自适应式调平,确保底盘高效完成田间作业。(2)底盘传动与行走系统的设计。底盘变速箱的选型和设计,所选择的变速箱有三个前进挡位,一个倒退挡位。前进挡位传动比依次分别为3.747,9.403,22.644,倒退挡位的传动比为10.563。快慢挡变速箱的设计,选型的变速箱挡位较少,无法满足丘陵山地的作业需求,因此在传动系统中增设快慢挡变速箱,快慢挡变速箱的传动比为2:1。锥齿轮动力换向箱的设计,根据动力传输和底盘调平需要,在前后驱动桥之间设计锥齿轮动力换向箱,动力换向箱的传动比为1:1。前后转向驱动桥的选型,所选前后转向驱动桥为同一型号,前后驱动桥呈对称布置,总传动比为12.6。底盘理论速度最低为0.91Km/h,最高理论速度为10.89 Km/h。结合自适应式丘陵山地拖拉机底盘整体的设计要求和最低离地间隙考虑,底盘所选型的轮胎为6.00-16普通断面斜交结构驱动轮胎,其断面宽度为165mm,外直径为745mm,负荷能力为495Kg。该轮胎抓地性强,承载能力高,可适应丘陵山地区的复杂路面。(3)底盘转向与制动系统的设计。采用前轮偏转和四轮偏转两种转向方式,前轮偏转最小理论半径为2003mm,四轮偏转最小理论半径为1494mm。底盘采用带式制动,通过皮带与制动鼓的摩擦力矩完成制动。(4)底盘调平系统的设计。该底盘采用三点铰接结构调平方式,铰接装置分别布置前后转向驱动桥差速器壳体上以及前转向驱动桥内侧。前后桥差速器壳体上的铰接的摇摆支撑座与车架前后端通过螺栓固定,前桥内侧铰接点与车架一侧的铰接点通过液压油缸联接,通过控制液压油缸活塞的伸缩来完成底盘车身的调平,确定底盘调平范围在-25°~25°区间,运用simulink建立了调平机构的运动学仿真,通过仿真结果确定调平油缸角度范围在63.9°~107.5°之间,角速度范围在-0.2061~-0.1535rad/s之间,角加速度范围在0.0358~-0.0035rad/s~2之间,满足作业需求。(5)底盘的性能分析,对底盘的纵横向稳定性以及越障性能进行了理论分析,得出结论:该自适应丘陵山地拖拉机底盘上坡和下坡极限翻倾角分别为55.38°和44.03°,上坡和下坡纵向滑移角分别为26.62°和13.18°,最大横向翻倾角为40.01°,由于最大调平角度的限制,达不到最大横向翻倾角,横向极限滑移角为26°,驱动轮越障高度为264.5mm,均可适应丘陵山地作业需求。(6)底盘车架的设计以及对车架与前转向桥的静力学分析。利用ANSYS Workbench软件对机架和前转向驱动桥在静态工况下的受力进行有限元分析,由分析结果可知:车架的最大应力为98.12MPa,最大位移为0.23mm,前转向驱动桥最大应力为31.179MPa,最大位移为0.07066mm,强度和刚度都满足设计要求。根据研究结论分析得出该底盘的结构设计符合丘陵山地区实际作业要求,满足丘陵山地各工况作业,对丘陵山地区农机化作业水平的提高具有重要意义。