论文部分内容阅读
现有的多属性决策方法大多建立在期望效用理论基础上,而不确定条件下期望效用理论描述性功能的缺陷使得以其为基础的效用测度不能对人类的价值偏好进行正确的反映,继而,基于偏差的效用测度用作决策分析,将导致不正确的决策。且现实生活中,由于决策问题本身的复杂性,决策者知识的有限性,被评价事物自身的模糊性,以及获取精确信息所需要的高成本等条件的限制,决策信息往往很难或不可能用精确数来表示。这就要求人们不断地重新审视已有理论、方法和技术,并结合变化做出科学的、合理的批判和改进。针对不确定条件下的多属性决策问题,本研究从前景理论的视角对基于直觉梯形模糊信息的复杂大群体多属性决策方法进行研究,将前景理论纳入到多属性决策的分析框架。一方面,前景理论中的效用测度是建立在参考点基础上的价值判断,与期望效用理论相比,更符合实际和更准确地描述和解释不确定性情况下决策者的决策选择行为。考虑到决策分析主要是一种建立在描述性和规范性研究范式基础上的指导性学科,因而,为了使得复杂大群体直觉梯形模糊多属性决策模型在现实中更具有指导价值,本文将前景理论的思想融入到多属性决策模型中,以决策者给出的属性前景价值信息为基础构建决策模型,用前景理论改进期望效用理论下的多属性决策理论与方法。另一方面,对于决策信息的模糊性和不确定性,决策者愿意以语言信息或者模糊信息给出自己的决策信息,用直觉梯形模糊数描述模糊决策信息是解决模糊多属性群决策问题的一种思路。论文主要工作和成果如下:首先,构建了直觉模糊环境下基于多参考点的前景价值确定方法。基于前景理论和直觉梯形模糊数,构建直觉梯形模糊环境下前景价值确定方式,将前景理论拓展到直觉梯形模糊环境。进一步,考虑到多个参考点的情形,鉴于证据理论在处理不确定性信息方面的优势,本文运用证据理论作为处理多参考点下前景价值的融合问题的框架,提出了基于mRP和DS-TrIF-IOWA的直觉梯形模糊前景价值确定方法。其次,提出了基于关联信息与前景理论的直觉梯形模糊多属性决策方案优选方法。考虑到不确定条件下前景理论相对期望效用理论更符合人类实际的决策模式,运用上述直觉模糊环境下基于多参考点的前景价值确定方法来计算直觉梯形模糊多属性决策中方案单属性价值。进一步,考虑到现实决策问题中属性间往往存在或多或少的关联信息,引入Choquet积分来解决不确定决策中属性相互关联的决策问题。为此,提出了几个基于Choquet积分的直觉梯形模糊集结算子,TrIC算子、ITrIC、TrICD算子和ITrICD算子,并对各算子的性质作了探讨。在这些概念基础上提出了基于TrIF-Choquet算子的综合前景值确定方法以及基于TrIF-Choquet距离和前景理论的直觉梯形模糊TOPSIS方法。再次,提出了基于ITrIFC和TrIF-OWAD算子的大群体聚类算法。群体聚类方法引进前景理论的思想,以直觉梯形模糊前景价值矩阵为基础聚类信息,为了综合考虑属性之间的交互信息和方案排序位置在聚类分析中的重要性,我们在相似矩阵的构建中运用ITrIFC和TrIF-OWAD算子对相关决策信息进行集结,构建了决策者之间的相似度,基于此,建立直觉梯形模糊信息下大群体聚类算法。在此基础上,提出了基于大群体聚类算法的复杂大群体直觉梯形模糊多属性决策一致性分析和一致性修正自动算法。考虑到在大群体内部可能存在子群体簇或“联盟”的可能性,根据上文提出的大群体聚类算法对复杂大群体进行聚类,根据群体聚类结果来设计聚集一致度指标和大群体的一致度指标,建立基于大群体聚类算法的群体判断一致性分析方法。对于评价信息的修改,考虑到尽可能的尊重决策者原始评价信息,建立基于大群体聚类的群体一致性修正方法。考虑到时间和成本的限制以及从众行为的影响,提出一种大群体一致性分析的自动算法。根据算法编制计算机程序,算例分析表明该方法具有较强的可操作性和实用性。然后,提出了复杂大群体下直觉梯形模糊前景价值矩阵群集结方法。在上述复杂大群体直觉梯形模糊多属性决策一致性分析和一致性修正基础上,考虑到聚集内的个体前景价值矩阵具有相似的特征,首先,根据直觉梯形模糊距离、个体决策信息和聚集虚拟核心人物的偏好信息来确定决策者聚集内权重信息,构建聚集直觉梯形模糊前景价值共识矩阵,在此基础上根据类间权重信息将聚集直觉梯形模糊前景价值共识矩阵集结为大群体直觉梯形模糊前景价值共识矩阵。该群集结方法可以更好的减少信息的损失,尽可能的保留决策者的原始信息。最后,提出了一个基于前景理论的复杂大群体直觉梯形模糊多属性决策模型(mRP-TrIFPV-MAGDM)。决策流程上,该模型整合了属性前景价值确定、群体一致性分析和修正、群体共识形成和方案优选,为决策支持系统的开发提供了支持。研究范式上,该模型结合规范性研究范式和描述性研究范式,综合考虑了基于多个参考点的效用测度方式、属性间的关联信息、决策者复杂的观念特征,从而构建的复杂大群体直觉梯形模糊多属性决策模型更具有指导价值。将上文提出的mRP-TrIFPV-MAGDM模型应用到产品两型化多属性决策问题中,该模型的实用性和可操作性得到了证明。