【摘 要】
:
探寻安全清洁的能源,并满足日益增长的能源需求是一项关键挑战。如何实现受控核聚变能的和平利用成为各国研究的热点问题。作为最有希望实现可控核聚变的装置,托卡马克运行过程中,会产生大量的热量和粒子,需要将其及时排除,偏滤器靶板是发生等离子体与材料相互作用的主要区域。现有的托卡马克装置开展等离子体与材料相互作用的相关研究存在如诊断困难、环境复杂等弊端。直线等离子体实验装置具有很好的可诊断性、参数可控性和稳
论文部分内容阅读
探寻安全清洁的能源,并满足日益增长的能源需求是一项关键挑战。如何实现受控核聚变能的和平利用成为各国研究的热点问题。作为最有希望实现可控核聚变的装置,托卡马克运行过程中,会产生大量的热量和粒子,需要将其及时排除,偏滤器靶板是发生等离子体与材料相互作用的主要区域。现有的托卡马克装置开展等离子体与材料相互作用的相关研究存在如诊断困难、环境复杂等弊端。直线等离子体实验装置具有很好的可诊断性、参数可控性和稳态运行特性,可方便进行等离子体与材料相互作用研究。基于上述物理问题及直线等离子体实验装置的优势,我们拟设计并建造一台直线等离子体实验装置,名为多种等离子体模拟直线装置(MPS-LD),为今后相关实验研究工作的开展提供平台。本文主要开展了MPS-LD装置关键系统的物理设计,经过对每个系统的详细设计研究,最终确定总体设计如下:MPS-LD装置的主体部分是一个3 m的圆柱形真空腔室,由直径0.4 m和0.6 m的两部分构成,它的外侧包裹的11个线圈可以产生0.3 T的轴向磁场。腔室分为等离子体源室,辅助加热室和靶室三部分,通过三级差分抽气的方式,使本底中性压降到10-4 Pa,实验过程中的中性压保持在10-2 Pa。等离子体源主要采用螺旋波源和以六硼化镧为阴极的电弧源,产生的电子密度可达1018-1019 m-3,能满足不同的实验需求。在辅助加热室中,通过电子伯恩斯坦波加热和离子回旋共振加热的方式分别有效的实现对电子和离子的辅助加热,可产生电子与离子温度达1-20 e V的等离子体。靶室中拟安装紧凑环,可用于模拟研究托卡马克中加料等关键问题。作者主要参与装置各主要部件的物理设计工作,负责磁体系统设计与磁场模拟、真空系统设计与需求计算、辅助加热系统设计工作。本文第一章主要介绍了研究背景、研究内容及研究意义。第二章主要介绍了MPS-LD装置整体概况,阐述了装置定位和基本参数。第三章主要展示了磁体系统的设计与基于COMSOL Multiphysics软件的磁场模拟,得到了磁场强度0.3 T,磁场波纹度<3%的磁场分布,并确定了对应的各线圈关键参数。第四章介绍了真空系统的设计及针对真空度需求的理论计算。第五章阐述了针对辅助加热系统的相关原理设计,得到了辅助加热所需要的磁场位形和离子加热天线。第六章对不可或缺的各辅助系统及各自满足的实验需求进行介绍。第七章主要对本文所介绍的工作进行总结。
其他文献
褐煤是一种低阶煤,约占煤炭总储量的40%,水分含量高是褐煤最显著的特征之一,也是对其使用影响最重要的参数之一,因此清洁且高效的利用褐煤对环境保护和减少碳排放至关重要。生物质作为自然界中普遍存在的资源,因其来源广,可再生,环境友好等优点在整个能源体系中占据着重要的位置。在传统的煤热解过程中由于煤炭中的氢元素含量较低导致焦油产率较低和高附加值的化工产品的产率较低,而生物质具有高H/C比,可在共热解过程
核能由于其清洁、无污染且可持续发展等特点,被广泛研究和应用。在过去几十年的发展中,核能已经成为一种可靠的人类能源。近年来,随着第四代先进核反应堆、核聚变堆的迅速发展,核反应堆结构材料的辐照损伤效应是面临的关键挑战之一,开发适用于先进堆型的抗辐照结构材料变得更加迫切。然而,现阶段能够满足对应极端工况环境的传统材料很少,有必要开发新型的抗辐照结构材料。由于界面会对辐照缺陷的行为产生积极的影响,因此在材
核聚变是目前最有可能解决人类能源问题的一种手段。托卡马克装置是最有可能实现受控核聚变的装置。在托卡马克装置运行过程中,面向等离子体的部件(Plasma Faceing Components,PFCs)材料会承受来自芯部的等离子体高能粒子流和热流的轰击,即等离子体与壁相互作用(Plasma-Wall Interaction,PWI),PWI使得PFCs的表面形貌发生变化。在托卡马克装置高参数、长脉冲
土地增值税是国家为了提升对房地产行业管控力度,合理调节土地增值收益的重要调控手段,也是财政主要税收来源之一。对房地产企业来讲,土地增值税属于其开发经营过程中面临的核心税种之一,而土地增值税的清算工作更是一项庞大且复杂的工作,其涉及方面之广,纳税金额之大,不仅极大地影响企业的现金流,而且还严重制约了其盈利水平,因此如何在合法合规的前提下做好土地增值税的筹划与清算工作成为房地产企业面临的巨大挑战。土地
多孔介质内的渗流过程广泛存在于石油、天然气开采、CO2地质封存、微机电系统等领域。近年来,多孔介质内两相渗流特性受到越来越多的关注。微纳米级孔隙是流体在多孔介质中渗流的主要通道,不同于常规尺度的流动,气体在微通道中的流动存在微尺度效应,这会导致渗流性质发生改变。本文基于MRT-LB模型,考虑努森层对气体流动的影响,并结合大密度比多组分多相伪势模型,构建了微尺度多组分多相LB模型,并用该模型研究微通
为了使聚变装置高性能稳定运行,降低等离子体对器壁溅射与侵蚀尤为重要。直线型等离子体装置(Linear Plasma Devices,LPDs)能够产生多种稳态等离子体,实验过程中参数可控、易测量、制造周期短,成本低,对于开展等离子与壁材料相互作用(Plasma-Materials Interactions,PMIs)研究具有不可替代的作用。为了产生高温高密度稳态等离子体,以模拟聚变粒子辐照效应,对
中国聚变工程试验堆(China Fusion Engineering Test Reactor,CFETR)的核心目标是实现200 MW到1 GW的聚变输出功率和氚自持,在高约束模式下如何进行高效的燃料补充对实现这一目标至关重要,传统的加料方式如吹气和超声分子束已经难以实现聚变工程实验堆燃料消耗的有效补充。弹丸加料作为一种成熟的加料方式,已经在许多大型装置上得到了验证,且被国际热核聚变实验堆(In
面向等离子体部件(plasma-facing components,PFCs)的燃料滞留测量一直是托卡马克装置中重要的研究领域,燃料滞留问题主要是低Z燃料元素滞留在第一壁上,影响材料的性能以及边界粒子再循环。激光诱导击穿光谱(laser-induced breakdown spectroscopy,LIBS)技术是一种利用激光烧蚀样品并得到光谱的元素探测技术。该技术可以很好地诊断PFCs中燃料滞留
海洋船舶工业作为海洋传统产业之一,如何做强做优这一产业是我国实现“海洋强国梦”和建设“21世纪海上丝绸之路”的根本保障。其中,动力系统能量转化效率的提升是制约其更新换代的重要因素。因此,开发高效低阻换热器作为提升动力系统能量转化效率的重要途径,对于船舶航运工业和海上石油平台等海洋工程领域具有重要的意义,可有助于提高海洋船舶业的经济性、环保性等核心性能。本文受鲨鱼鳃裂结构启发,设计了一种适用于受限空
虽然燃烧反应过程十分复杂,但其在探究高效率、低污染的燃烧方式中十分重要,因此需对燃烧机理进行详细分析。通过对燃烧机理的分析,可获得不同燃料的特征反应,并加深对燃料燃烧特性的理解;可获得不同燃烧机理中的重要反应,以构建简化机理,降低计算成本;可获得燃烧机理中不同参数的不确定度对机理预测精度的影响,并明确燃烧机理预测不确定度来源,提高预测精度。为了研究实用燃料的氧化和燃烧性能,由各类型单一组分燃料混合