论文部分内容阅读
自适应有限元法是求解椭圆特征值问题的高效数值方法之一,而后验误差估计则是自适应有限元方法的理论基础。1978年美国数学家Babuska和Rheinboldt提出有限元后验误差估计和自适应有限元法的思想。继他们之后,人们从理论上对有限元自适应方法做了大量广泛的工作,并成功的运用到实际应用中。结合协调元和自适应方法求解椭圆特征值问题,前人做了大量的研究,并得出这个方法的收敛性和优越性。运用协调元和非协调元自适应方法求解椭圆特征值问题,可以分别得到准确特征值的上界和下界,这使研究非协调元自适应方法求解椭圆特征值问题是有意义的。 在这样的背景下,对Laplace特征值问题本文结合了非协调Crouzeix-Raviart元和移位反迭代,首次提出了一种基于残差型后验误差估计的非协调Crouzeix-Raviart有限元自适应方法。分析了它的收敛性和先验误差估计,证明了后验误差指示子的有效性和可靠性。最后我们在陈龙的有限元平台下用MATLAB编程计算,得到了满意的数值结果。