论文部分内容阅读
基于政府间气候变化委员会第四次评估报告(IPCC AR4)海气耦合模式模拟实验,本文利用POM (Princeton Ocean Model)基础之上建立的东中国海区域模型,研究黄海动力环境在RCP4.5未来情景下,对气候变化的响应。首先对耦合模式进行验证,结果显示,各模式能较好的模拟东亚地区的气候态特征,如:冬、夏季盛行风向,降水、热通量的季节和海陆分布特征等。四个海气耦合模型模拟结果对比显示,在RCP4.5情景下,未来东亚季风区冬季风变弱,夏季风变强,热通量全年增加。以各海气耦合模式模拟的气候态结果作为大气强迫分别驱动POM模型,所得模拟结果较为一致,且通过与历史资料对比验证显示,模式结果能较好的模拟出黄海基本水文特征,如:准确的模拟了10℃等温线包络范围的季节变化特征,35°N断面水温季节分布特征以及黄海冷水团生消变化特征等。其中,35°N断面水温的模拟结果除5月份偏高外(这是由于风场分辨率较低引起的),其他季节的模拟结果均能较好的把握住水温分布特征,验证了模式结果的可信性。以各耦合气候模拟作为强迫,模拟未来黄海动力环境对于气候变化的响应,POM模型模拟结果具有很好的一致性。RCP4.5情景下,未来黄海水温全年增加,增加幅度在2℃左右,冬季,黄海暖水增温以GFDL-CM3的模拟结果幅度最大,为2.99℃,而四个模式的平均结果为2.2℃左右,造成这一结果的直接原因是海气热交换量增加。这是由于冬季季风减弱,使得蒸发潜热量减少,海水失去热量降低,最终导致海水温度升高。而黄海冷水团是前一年冬季黄海混合后海水的“残留”,所以必然会受到该变化的影响。通过计算底层8℃等温线包络水体面积和最低水温的变化来确定黄海冷水团的变化情况,计算结果显示,冷水团面积平均减少46.8%,而中心冷水温度升高幅度以GFDL-CM3模拟的结果最大,温度升高2.44℃,而四个模式模拟的平均升温幅度也达到1.88℃;在冬季风减弱的情况下,具有补偿性质的黄海暖流也相应减弱,这可以通过侧向热量输送减少得到佐证,同时表层流和沿岸流也减弱。