论文部分内容阅读
随着金融业信息化建设的快速发展,金融数据量不断增多。如何对这些数据进行有效的分析成为研究的热点问题。近年来,针对金融数据动态、复杂、非线性的特点,人们将非线性理论引入,以期更加准确地从这些数据中揭示金融市场的运作规律。其中,分形技术是非线性理论中的一个分支,相关的研究表明在金融市场中分形现象是普遍存在的。本文围绕金融数据分析领域中的热点和难点问题,对基于分形技术的数据分析方法进行研究。针对金融数据的特点,研究了金融一元、多元时间序列分形维数的定义、计算方法和意义;并在此基础上,将分形维数与数据挖掘算法相结合用于解决金融数据分析中的关键问题——相似性分析、维数约简以及预测等。论文的主要工作如下:1.论述了相关的研究背景和意义,介绍了分形理论的发展概况,总结了分形技术在金融数据分析中运用的原理和方法。2.介绍了金融时间序列中常用的分形维数计算方法,并探讨了维数求解的后期过程中数据的拟合方法。论文分别运用最小二乘法和最小二乘分段方法对数据进行拟合,相关的实验结果表明最小二乘分段拟合方法能够提高拟合性能,进而提高维数计算的准确率。3.为了更好地表征金融时间序列的波动特征,提出了一种趋势分形维数的定义和计算方法。该维数分为阴线维和阳线维。通过对股票数据、汇率数据和期货数据的实验研究,表明阳线维或阴线维相对于传统的分形维数能够更好地指示金融市场的跌涨情况。4.研究了金融时间序列中的相似性分析方法。提出将趋势分形维数和K-means聚类算法相结合的相似性分析方法,并对股指序列进行了相似性聚类研究。该方法首先利用趋势分形维数对时间序列进行表示,进而利用K-means算法对表示后的序列进行聚类。通过与传统分形维数表示下的聚类结果相比较,利用趋势分形维数表示的聚类结果更加准确。说明趋势分形维数比传统分形维数具有更准确和更细致的描述能力。这也进一步表明了趋势分形维数的意义和作用。5.分析和比较了多元时间序列分形维数计算方法的异同点。进而提出一种多元时间序列维数计算方法,实验表明该方法简便、可行,取得的计算效果较好。6.针对多元金融时间序列降维问题,提出一种基于蚁群算法和分形维数的属性选择方法。并在属性选择的基础上对多元时间序列的预测问题进行了研究,研究表明该改进算法具有较好的性能,能够识别出关键属性,提高预测的准确率。