论文部分内容阅读
烧结NdFeB作为第三代稀土永磁材料,自1983年被发现以来,以其高性能(理论磁能积为64MGOe)、高性价比得到迅猛发展。我国是稀土大国,稀土资源占世界储量的80%,这是我们发展稀土永磁材料的最大优势。然而,我国大多数企业的生产技术水平远远落后于日本和欧美,产品档次也不高,在市场竞争中处于不利的地位,因此,提高烧结NdFeB磁体的性能档次,是许多烧结NdFeB生产企业必须面对的问题。在公司现有设备条件下,如何使烧结NdFeB磁体性能达到最高,这是本课题研究的出发点。本课题从NdFeB合金铸锭的组织分析入手,采用双合金工艺,制粉采用氢爆工艺,有效控制工艺参数,以获得磁性能最佳的烧结磁体。对NdFeB合金铸锭的组织分析表明,现有的冶炼设备生产的铸锭,在稀土含量降低时,析出大量α-Fe。铸锭中α-Fe相的存在,不仅减少了铸锭中Nd2Fe14B相生成数量,还对后续的制粉、成型工序产生不良影响,特别是严重危害烧结钕铁硼磁体的性能,具体表现在磁体的剩磁、磁能积没有因合金中稀土含量的减少而提高,磁体内禀矫顽力亦受到影响。为此,采用真空高温退火的方式消除铸锭中α-Fe。用退火后的铸锭直接制备烧结磁体,磁体的剩磁、磁能积显著提高,但内禀矫顽力比较低。为此,采用双合金工艺提高磁体的矫顽力。主合金成分接近Nd2Fe14B相,辅合金是富钕相。主合金经高温退火消除α-Fe。主、辅合金经氢爆破碎后,按一定的比例进行混合后,气流磨制粉,磁场取向成型,烧结、回火,制成烧结磁体。通过对氢爆工艺粉末及磁体组织的分析,采用氢爆破碎,有效改善粉末的性质,提高磁体性能。对双合金磁体的烧结、回火工艺的研究,双合金磁体的烧结温度高于传统磁体的烧结温度,确定最佳的烧结温度为1105℃,最佳回火温度为520℃。对主、辅合金混合比例对磁性能的影响进行分析,当比例为93:7时,双合金的名义成分为Nd30.23Pr1.05Dy0.7B1.07Nb0.279Al0.186Cu0.07Fe66.41(5wt%)时,双合金磁体达到了磁能积45MGOe,内禀矫顽力13.8kOe的最佳磁性能。