论文部分内容阅读
粘体动物(Myxozoa)是形态简单、个体微小的专性内寄生虫,宿主范围广泛,能寄生鱼类、两栖类、爬行类、鸟类及哺乳类。当前,关于粘体动物的研究主要集中于分类学、生活史及起源与适应性进化,其中,起源与适应性进化是研究的重点和热点。近三十余年来,粘体动物的阶元归属经历了从原生动物到后生动物,再到两侧对称生物以及刺胞动物的过程。但限于技术手段,目前无法进一步确定粘体动物在刺胞动物内部的具体归属和进化地位。同时,粘体动物目前已报道超过2,600余种,分布在河流、湖泊、深海、陆地等多种生境中,是生态适应成功的典范。但是,目前粘体动物适应内寄生过程中的驱动因素与分子机制尚不清楚。作为生命之树中较为古老、结构较为简化的后生动物寄生虫,探讨粘体动物的起源与适应性进化问题,对开展后生动物重要生命特征,进化模式、规律与机制研究有着重要意义。随着组学技术的快速发展以及各种粘体动物和刺胞动物组学数据的释放,粘体动物的起源与适应性进化研究拥有了更好的技术支持与数据基础。本研究以粘体动物最大的一科——碘泡科(Myxobolidae)中的部分代表物种为研究对象,结合已发表粘体动物、刺胞动物资料,运用系统发育基因组学、比较蛋白质组学和比较基因组学技术,对粘体动物在后生动物、刺胞动物中的系统发育地位、分化时间、特异细胞器刺丝囊对物种适应进化贡献、基因组进化、适应性进化分子机制等方面进行研究。主要结果如下:一、粘体动物系统发育地位通过对粘体动物、自由生刺胞动物和其他后生动物的主要类群进行广泛采样,本研究建立了较为全面的后生动物和刺胞动物系统发育矩阵。其中,后生动物矩阵包含103个物种,232个直系同源基因(57,930个氨基酸位点),数据丢失率为31.1%;刺胞动物矩阵包含76种后生动物和2种鞭毛虫外群,146个直系同源基因(51,598个氨基酸位点),数据丢失率为24.8%。基于上述两个矩阵,使用RAx ML,IQ-TREE以及Phylo Bayes软件,分别在后生动物和刺胞动物尺度下对粘体动物的系统发生地位进行了探讨。并使用近似无偏检验法对17种候选的后生动物和刺胞动物的系统发育关系开展了测试。最后,对上述两个矩阵运用了快速进化位点梯度剔除法来检测快速位点是否给系统发育关系造成了误导。结果表明粘体动物稳定地与螅型多足虫聚为一支,而后再与水母亚门呈姐妹群。AU检验显著地拒绝了大多数(粘体动物+螅型多足虫)之外的聚类方式。虽然粘体动物+栉水母的拓扑结构未能被显著拒绝,但其P值仅略大于0.05(0.0561),进化树中的自展值也极低(0.0000),因此作者认为该结构并非最优。快速进化位点剔除分析表明,在删除50%的快速进化位点之前,关键节点都保持了极高的自展值。在删除超过50%的位点后,关键节点的自展值才开始出现下降。((粘体动物+螅型多足虫)+水母亚门)的拓扑结构得到了确定且稳定的支持。该研究结果克服了碱基替换饱和、长枝吸引等以往分子系统分析中的不足的问题,所构建的进化树更加稳定和准确。二、粘体动物发生年代分析选取刺胞动物冠部的最大分歧时间(741百万年前),水母亚门的最小分歧时间(570百万年前),六放珊瑚亚纲的最小分歧时间(540百万年前),水螅纲的出现时间(500百万年前)作为化石校正点,使用惩罚似然法(Penalized likelihood,PL)对粘体动物的分化时间进行估算。结果显示,刺胞动物的最后共同祖先起源于拉伸纪(736百万年前),水母亚门起源于埃迪卡拉纪(626.6百万年前),粘体动物共同祖先发生于晚寒武纪(492.6百万年前)。目前,最早的寄生虫化石发现于寒武纪,因此本结果说明粘体动物是比较古老的后生动物寄生虫之一。三、粘孢子虫刺丝囊与壳瓣分离提纯方法的建立粘体动物的刺丝囊对其生活史的完成至关重要,是研究表型对适应性进化贡献的理想对象。为了便于后续实验的开展,本研究中开发了一种快速有效的粘体动物孢子的解剖方法,该方法可用于分离碘泡科代表物种——洪湖碘泡虫(Myxobolus honghuensis)、吴李碘泡虫(Myxobolus wulii)、吉陶单极虫(Thelohanellus kitauei)的刺丝囊和壳瓣。该方法主要通过蔗糖密度梯度对粘体动物孢子进行纯化,通过超声破碎进行孢子解离以及Percoll密度梯度离心分离刺丝囊/壳瓣。采用50%-70%-90%Percoll分离液对孢子破碎液进行密度梯度离心,在50%与70%Percoll溶液层之间以及70%Percoll分离液中部可获得纯度接近100%的完整刺丝囊。采用100%的Percoll分离液对孢子破碎液进行离心,在Percoll分离液中部可获得纯度接近100%的完整壳瓣。为进一步了解粘体动物刺丝囊的生物学,评估了温度、盐度、多种化合物以及重金属离子对洪湖碘泡虫完整孢子和离体刺丝囊释放情况的影响。结果发现,热、尿素和氨处理能够成功地触发大多数孢子和离体刺丝囊的释放,而Na Cl、乙酸、乙醇、碳酸氢钠和Ca Cl2则不能。重金属处理可显著降低刺丝囊的释放率。本研究为下游实验奠定了基础,还为其他寄生类群孢子的解离研究提供了新视角。四、粘体动物综合蛋白数据库的构建开发了“定制综合蛋白质组参考数据库(customized comprehensive proteomic reference database,CCPRD)”流程,用以提供全面、无污染的蛋白质组学参考数据库。使用洪湖碘泡虫、吴李碘泡虫、吉陶单极虫刺丝囊的蛋白质组学数据评估了CCPRD的有效性。具体来说,本研究将CCPRD的质谱鉴定结果与四个对照数据库的结果进行了比较:(1)转录组的六框翻译(trans_6_frame);(2)转录组+基因组的六框翻译(genome+transcriptome_6_frame);(3)将人工的宿主和细菌序列添加到CCPRD(CCPRD_contam)中而建立的污染物数据库;(4)将通过去污染过程中剔除的序列(包括基因组和转录组数据)回添到CCPRD(CCPRD_remove)。结果表明,CCPRD_contam比CCPRD鉴定出了更多的肽段和蛋白质,这表明组学数据中确实存在污染,证明了污染剔除的必要性。对于CCPRD_remove,回添污染去除过程中移除的序列并没有增加鉴定肽段和蛋白质的数量,这表明本方法没有过度剔除。CCPRD在肽段和蛋白质识别数量、数据库大小和完整性方面明显优于其他方法。相较传统数据库,CCPRD能多鉴定出19.1%-43.8%的蛋白质,并最多可节省84.6%的数据库容量。此外,本研究分析了各数据库结果的疏水性指数与保留时间的拟合程度,发现CCPRD可以提高鉴定结果的可靠性。去冗余分析结果表明,即使去除了冗余,CCPRD特异性肽段的数量仍超过其他数据库。这进一步证明CCPRD确实提高了数据库整体的性能,而并非仅仅增加了假阳性或者重复序列的数量。本研究为下游比较蛋白质组学分析提供了技术保障,并为其他涉及非模式生物的蛋白质组项目提供了借鉴和参考。五、刺丝囊对物种适应进化贡献的定量评估通过分析目前已发表的刺丝囊蛋白质组和111个刺丝囊转录组/基因组(包括7个新测序的粘体动物转录组和/或基因组数据集),研究了刺丝囊在刺胞动物适应性成功中的作用。结果发现,刺丝囊组成存在高度异质性,且蛋白质组相似度与物种亲缘关系之间的不一致,支持了刺丝囊的可塑性适应策略,暗示其在刺胞动物适应性进化中可能起着重要作用。另外,通过对刺丝囊的五种核心基因进行同源搜索,证明了刺丝囊的自发性起源,避免了下游分析时外部共生体的干扰。进一步研究了刺胞动物主要类群扩张前后核心集/非伴随集的进化平衡,发现了一种“去中心化修饰”的模式:即核心基因只经历了很少的进化事件,大量活跃的进化事件发生在非核心基因集中,可能是因为刺丝囊祖先原型的出现后,刺胞动物迅速分化,导致始祖刺丝囊未充分进化便扩张为各种形式,该发现同样支持刺丝囊在刺胞动物适应性进化中的关键作用。最后,刺丝囊蛋白(NEMs)适应超量分析以及选择富集分析发现,在NEMs中,最强的适应超量(BUSTED P值<10-5)可达60%(置换检验P值<2.2e-16,迭代次数107),并且NEMs显著富集了背景蛋白的选择压力(在0.05、0.01和0.001置信水平下,P值=0.004658、0.01117、0.007638)。综上,本研究定量地证明了刺丝囊是包括粘体动物在内的刺胞动物成功适应性进化的基石,并为今后评估特定表型创新对物种适应性进化的贡献提供了参考。六、洪湖碘泡虫基因组的马赛克进化为进一步了解粘体动物适应内寄生生活的分子机制,本研究分析了感染异育银鲫咽部的洪湖碘泡虫(M.honghuensis)的基因组。通过基因组survey及17-mer分析,预测洪湖碘泡虫基因组大小为206 Mb。三代测序的基因组最终大小为161 Mb,contig N50为1.3 Mb,预测到15,433个基因模型。进一步分析显示,由于基因保留,内含子增大,转座子插入等因素,洪湖碘泡虫拥有目前最大的粘体动物基因组,并且相较其他粘体动物呈现出了较低程度的基因组简化和紧密。作为对内寄生生活方式的适应,洪湖碘泡虫基因组中与神经系统相关的基因大幅丢失,并且拥有最简单的动物免疫基因组件。此外,为更好地适应内寄生生活,洪湖碘泡虫抗逆,侵袭,能量代谢和细胞过程相关的基因发生了显著的扩张与正选择。作者还发现洪湖碘泡虫具有相对保守的中胚层和肌原性组件,以及相对复杂的Wnt和Hedgehog信号通路。本研究揭示了洪湖碘泡虫基因组的马赛克进化模式,即不同的基因组区域表现出了不同程度发保守、分化、减弱和增强。洪湖碘泡虫的基因组非但没有表现出遗传退化,反而表现出相当数量的基因创新和扩张(主要涉及到多拷贝基因家族以及相应的调控基因。这些结果表明,粘体动物不像以前认为的那样遗传简化。至少对于粘体动物来说,转变为寄生虫的进化过程是由基因组简化和复杂化共同驱动的,并且这两种进化机制的相对贡献程度因物种而异。该研究改变或扩展了我们对粘体动物基因组复杂性和进化的传统认知,对于深入理解寄生虫进化这一进化生物学中的基本问题具有重要意义。综上,本研究基于系统发育基因组学构建了刺胞动物物种树,并分别分析和估算了粘体动物的系统发育地位与分化时间,为进一步了解粘体动物的起源提供了理论依据。在此基础上,从表型(刺丝囊)和分子(洪湖碘泡虫基因组)两个角度阐明了粘体动物适应性进化的驱动因素与进化机制,发现刺丝囊可能是刺胞动物(包括粘体动物)成功适应性进化的关键表型;并通过洪湖碘泡虫与现有粘体动物、刺胞动物的比较基因组学研究,发现粘体动物基因组进化反映了丢失冗余基因造成的基因组简化和强化寄生能力导致的基因组复杂化之间的动态权衡,从而初步解释了粘体动物内寄生适应成功的遗传机制。