论文部分内容阅读
随着无线通信技术的迅猛发展,移动基站和其它射频系统对微波器件的性能指标要求越来越高,尤其是对微波滤波器的小型化,低损耗和高抑制的要求也越来越苛刻。而本文研究的多模介质腔体滤波器具有一腔多模,体积复用的特点,能够实现滤波器小型化;同时又具有高Q值的特点,可以实现滤波器低损耗。所以本文的研究工作具有重要的工程应用价值。本文对多模技术和介质腔体滤波器做了若干研究与分析。首先,本文研究了一种基于开槽技术的TE01δ和HEH11模式(简并双模)的三模介质谐振器,并用于三模介质腔体滤波器的设计;其次,基于传统柱形谐振器,研究了一种基于TE01δ和HEH11模式的三模双通带介质腔体滤波器。具体研究内容如下:1.提出了在传统柱状介质谐振器的45°/135°/225°/315°四个方向径向开槽,使TE01δ模式与HEH11模式的谐振频率同步,从而构建了混合三模介质谐振器;根据TE01和HEH11模式的不对称电场结构,提出了在介质谐振器表面设置微带基板,并在基板上使用镰刀型的金属导带电路耦合结构,从而构建三模介质腔体滤波器;在腔体中使用多个金属调螺和介质调螺实现各模式频率的调谐,以及对耦合系数的调节。对三模介质滤波器进行了实物加工、装配调试与测试。所得结果良好,实现了较低的损耗,并且滤波器的体积得到了缩减。2.基于传统柱状介质谐振器,利用单模TE01δ和简并双模HEH11分别实现两个通带,从而实现了三模双通带介质腔体滤波器。在具体滤波器的实现中,利用由竖直圆柱金属导体和弧形金属导体组成的结构作为输入输出端口耦合结构;利用双电容探针结构实现相邻两腔之间的TE01δ模式耦合以及两腔中水平极化的HEH11模式耦合;利用一些金属调螺实现各模式频率的调谐,以及实现每个腔中简并双模HEH11之间的耦合。通过实物加工、装配调试和测试,得到了良好的测试结果,实现了滤波器的双频段工作,滤波器的体积也得到了缩减。3.此外,本文还研究了一种双频耦合器。提出了一种阶梯阻抗平行耦合线,并将之用于任意耦合系数、大工作频率比的双频耦合器的设计。其中分别设计了频率比为1GHz/7.5GHz和1GHz/5.2GHz的20dB耦合度和6dB耦合度的双频耦合器。通过级联多个对称阶梯阻抗平行耦合线,还可以实现宽带双频耦合器。本文给出了设计方法和实例,对这三款耦合器分别进行了实物加工,这三款耦合器都获得了较低的回波损耗、较高的隔离度、较宽的带宽,且其尺寸小于传统的单频耦合器。