地波雷达海杂波背景下的船只目标检测方法研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:zhengjjing
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
地波雷达目标探测应用中,不可避免的会受到多种杂波、干扰和噪声的影响。其中海杂波能量很强,且往往高于目标回波信号。海杂波的存在,不但严重干扰了邻近海杂波区域的船只目标探测,而且展宽的海杂波会完全掩盖进入其中的目标信号,形成“检测盲区”,导致目标漏检。特别是对小型地波雷达系统,由于天线阵列孔径减小和天线小型化,使得雷达波束宽度大幅增加、增益降低,因而由海杂波多普勒扩展导致的遮盖效应更加严重,进一步增大了海杂波背景下的目标检测难度。因此,海杂波干扰下的目标检测,尤其是展宽海杂波区域内的目标检测,是地波雷达目标探测中亟待解决的关键问题,也是地波雷达海洋监视监测技术的重要研究方向之一。本文为解决海杂波影响下的目标检测难题,结合仿真实验与实测数据,开展地波雷达海杂波特性及其对目标的影响分析、海杂波抑制方法和海杂波内目标检测方法等方面的研究。论文主要研究内容如下:第一,系统分析了海杂波和目标在雷达回波中的各维度特征,结合地波雷达海杂波背景下目标检测的特殊性,对海杂波与目标在时域、多普勒域、空域以及联合域的多域特性进行了对比分析。利用窄波束地波雷达实测数据对海杂波与目标在空域的差异开展了分析比对研究,研究结果表明海杂波能量主要分布于少量方位。而宽波束地波雷达识别的海杂波方位数量有限,采用常规波束形成的方式无法降低海杂波能量。同时,通过结合与海杂波邻近和位于海杂波区的船只目标情况,量化分析了雷达积累时间、目标与海杂波区的关联以及船载移动平台的目标检测影响因素,给出了海杂波背景下目标检测积累时间的计算方式,为后续开展海杂波抑制、信息提取以及海杂波内的目标检测等方法研究提供了重要的依据。第二,针对海杂波抑制存在的系列问题,改进了传统时域对消方法,提出了矩阵分解与时频联合的海杂波抑制方法,发展了方位-距离-多普勒多域联合的海杂波信息提取方法。其中,改进的海杂波时域对消方法利用海杂波时域的正弦调制和频域的边界统计特性,约束时域模型参数估计及循环对消过程,解决了传统时域对消方法目标被误消除的问题,取得了更好的抑制效果。而提出的矩阵分解与时频联合抑制方法,综合利用了海杂波时频域特征,结合回波分量的瞬时频率估计,从矩阵特征值分解与时频联合的角度实现海杂波的抑制。克服了矩阵特征值分解方法杂波奇异值不易确定的问题,也避免了时频联合方法在时间和频率分辨率之间的相互制约,进一步提高了对海杂波的抑制能力。进而,提出了联合空、时、频多域的海杂波信息提取方法,提高了海杂波边界信息的提取准确度,为后续海杂波内目标的检测奠定了基础。第三,针对海杂波导致的目标检测盲区问题,将斜投影算子引入到地波雷达海杂波抑制中,研究斜投影改进算法和多级空域滤波器构造,在方位-距离-多普勒三维联合框架下实现了海杂波内目标检测。其中,针对斜投影空域滤波对噪声功率的放大效应以及小空间主角所导致的输出信杂噪比降低等问题,引入杂波抑制代价参数,提出了斜投影的改进方法,更适合构建海杂波空域滤波器。证明了改进的斜投影是传统斜投影的一种拓展形式,并推导了其具有的特殊性质。在分析斜投影滤波的参数选择影响的基础上,针对海杂波主能量的空域多方位特性,提出构建多级空域滤波器的方法,实现了对宽波束雷达海杂波的等效窄波束滤波。在此基础上,联合多普勒及距离域,提出了基于改进斜投影的海杂波内目标三维联合检测方法。经性能仿真分析和实测数据检验表明,提出的基于改进斜投影的三维联合检测方法较基于常规波束形成(Digital beam forming,DBF)的方位-距离-多普勒三维联合检测以及基于局域联合处理(Joint domain localized,JDL)方法更加有效。在低信杂比情况下,改进斜投影方法性能更优。最后,论证了海态信息在地波雷达海杂波内目标检测中应用的可行性,提出了综合海态信息的海杂波内目标检测方法。建立了海态信息到地波雷达海杂波谱的映射关系,分析了不同海态情况下的海杂波谱特征。进而,通过在构建的海杂波谱中添加仿真目标和实测雷达数据分析,提取了海杂波谱展宽量、峰值频率以及Bragg峰比值等目标存在所导致海杂波异常的敏感特征。最终,通过分析海况和海态测量精度对海杂波敏感特征的影响,提出了相关敏感特征异常检测的阈值确定方式。提出的方法不受海杂波抑制类方法在各个域所需的海杂波与目标间的特性差异性要求约束,也避免了抑制算法对雷达后续参数估计的潜在不利影响,提出了一种地波雷达海杂波内目标检测研究的新思路。采用岸基和船载地波雷达实验数据对该方法的有效性进行了检验,实现了检测结果与同步船舶自动识别系统信息(Automatic identification system,AIS)的比对验证,检测结果与AIS信息匹配较好。本文研究成果有望加深对地波雷达海杂波与目标特性的认识,提高海杂波抑制能力,推动海杂波内目标检测技术的发展,具有较好的研究价值和应用潜力。
其他文献
霍尔推力器是一种等离子体推进装置,广泛应用于卫星位保和深空探测。耦合区是连接推力器加速腔和空心阴极之间的物理分区,负责向加速腔和离子束流注入电子,对推力器效率、点火可靠性、放电模式和关键零部件寿命有较大影响。然而,由于一些观念误区,关于耦合区的研究很少,目前物理过程不清楚,制约着进一步的理论与应用研究。另一方面,耦合区自身具备一定特殊性,与加速腔或空心阴极的有区别,也需要重新理顺工作原理、物理效应
我国是磺胺类抗生素(Sulfonamides,SAs)生产和使用大国。排放到环境中的SAs对生态环境造成了不良影响,其选择压力作用还会诱导抗生素抗性细菌的形成,对人类与环境健康造成潜在威胁。因此,寻求高效深度矿化SAs的方法具有重要的意义。目前已报道的SAs生物降解产物普遍矿化程度低、存在反转途径,无法彻底去除SAs。尽管近年来发现的由降解基因簇sad ABC调控的SAs好氧降解途径在矿化程度上有
对电磁波的精准调控是当代通信与信息领域技术与应用的主战场之一,其中计算全息技术则是实现波前幅度和相位信息调控的典范。与传统的全息成像技术不同,计算全息的波前重建,不需要在光学系统中对实际照明光束与物波的干涉图进行采样,而是根据预设物像信息,通过计算机计算衍射过程,得到所需的复数阵列作为全息表面,以实现对图像的重构。因此该成像系统是为在特定电磁波照射下,利用设计的光学器件实现计算求得的全息表面,直接
风力发电机作为人类利用风能最主要的方式,其自身结构的安全稳定至关重要。大多数的风电场位于荒漠、山区、牧场、滩涂或近海等地域,严酷的自然环境致使大量服役的发电机所受的载荷复杂多样,难免会造成风机结构的疲劳累积损伤或突然破坏。传统的风机结构损伤识别方法多是采用人工地面观察、电阻式传感系统等检测风机故障。此类方法观测效率低,无法满足现阶段大功率风力发电机监测需求。本文以高性能光纤传感技术为基础,充分利用
水下湿法焊接技术以其低成本、可操作性强、适应程度高等优势被广泛应用于海上石油钻井平台、核电站、石油管道等近岸海洋结构的建造与维护领域。其中药芯焊丝焊接技术由于其焊接效率高且自动化程度高等优势,在深水焊接领域具有更广阔的应用前景,受到日益广泛的关注。然而由于水下湿法焊接过程直接暴露在水中,复杂的水环境会对焊接过程中的传质与传热过程产生交互作用,显著降低焊接电弧稳定性、改变熔滴过渡类型,进而直接影响焊
近些年来随着能源危机和环境污染日益严重,具有节能环保等优点的电动汽车越来越受到重视。稀土永磁同步电机具有高效率、高功率密度等特点,因此被广泛应用在电动汽车中作为驱动电机。然而近些年来稀土永磁体价格的剧烈波动使得少稀土永磁同步电机成为国际上的研究热点。本文以多层磁障式少稀土永磁同步电机(Multi-Layer Flux-Barrier Less-Rare-Earth Permanent-Magnet
进入数字时代,要贯彻新发展理念,全方位、深层次激活数据要素潜能,释放数据要素价值以驱动大数据产业高质量发展。"十三五"时期,我国大数据产业取得了突破性的发展,大数据产业规模稳步提升,产业价值不断释放。立足"十三五"时期大数据发展成就,展望"十四五"时期大数据发展前景,整体呈现出以下几大趋势。
期刊
效率是医院建筑的永恒主题,提高医院建筑的效率必须从医院建筑系统的各个专业角度做出相应的努力,从建筑学的角度解决医院建筑效率的问题,提出可供实践参考的系统工作模式,需要将建筑空间这一服务载体与医学专业的技术需求和患者反馈的相应结果进行对接,通过医学、建筑、患者三方面的专业协同实现提高医院建筑系统效率的最终目标。本研究从效率优化的视角出发,以系统论和协同论的相关思想为指导,以医务工作者的经验反馈、患者
随着大数据时代的到来,人们对数据传输速率和存储密度的要求日渐提高,技术成熟的电子学器件和传统光子学器件已无法满足社会进步的需求,新型光子学器件由于带宽高、小型化、易集成的优点成为解决上述问题的最佳选择。然而衍射极限的制约一直是光子学器件难以进一步小型化的拦路石。近年来,表面等离激元(Surface Plasmon Polaritons,SPPs)的相关研究为器件小型化注入新的活力。SPP作为导体和
中国共产党海外形象传播是近年来学界研究的热点。通过梳理抗战时期中国共产党海外形象传播的研究视角、传播路径、传播效用发现,学界取得了一定的成果。但仍存在不足:(一)多采取国外分析框架,较少利用中国本土传播经验分析的理论;(二)集中研究传播具体案例,缺乏整体视角和宏观框架;(三)多从结果层面研究,疏忽从原因、背景等出发点进行的研究。从发展趋势看,中国重回世界舞台中央,实现中华民族伟大复兴势不可挡,复兴