亚胺加成反应构建手性季碳和螺/桥环骨架研究

来源 :重庆大学 | 被引量 : 0次 | 上传用户:ID123888
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
亚胺的亲核加成反应是合成复杂含氮化合物最重要的反应之一。该反应大多需要预制备和分离纯化不稳定的亚胺底物,高效构建相邻季碳手性中心、螺环和桥环的方法仍然有限。开发新型亲核试剂,研究亚胺中间体原位生成新方法,探索立体控制新策略,发展亚胺亲核加成新反应,构建高合成挑战性的相邻季碳手性中心、螺/桥环骨架,具有重要的合成研究价值和应用潜力。本论文以廉价的手性氨基酸或其衍生物为手性源,研究了多官能团化的烯丙基硼酸和环丙醇为新颖的亲核试剂与原位生成的酮亚胺和亚胺离子的不对称加成反应,高效实现了相邻季碳手性中心和螺/桥环骨架的不对称构建。本论文具体包含以下三方面的研究。
  (一)γ,γ-二取代烯丙基硼酸与酮亚胺烯丙基化反应构建相邻季碳手性中心研究
  本论文成功实现了非手性的亲核试剂γ,γ-二取代烯丙基硼酸与手性氨基醇和靛红原位生成的酮亚胺的加成反应,以高收率和高非对映选择性实现了一系列高合成挑战性的含有相邻季碳手性中心3-氨基氧化吲哚衍生物的制备。机理研究表明,硼酸与酮亚胺的氨基醇片段的羟基发生配体交换后,亚胺的烯丙基化反应以分子内的形式进行,反应速度不仅得以大大提升,反应的立体选择性也得到手性氨基醇的高效控制,从而解决了相邻季碳手性中心构建的低反应活性和低立体选择性的难题。该研究的创新点在于:使用廉价易得的手性氨基醇为手性源和氮源;生成的酮亚胺中间体无需分离纯化;反应底物范围广,多种不同官能化的烯丙基硼酸和靛红均能较好地兼容;通过选择使用合适的E/Z构型的烯丙基硼酸和L/D立体构型的手性氨基醇,可实现四个异构体中每一个异构体的选择性合成。该项研究首次实现了非手性γ,γ-二取代烯丙基硼酸与酮亚胺的烯丙基化反应,丰富了相邻季碳手性中心构建的合成方法学。
  (二)环丙醇与酮亚胺加成反应构建哌啶螺环氧化吲哚研究
  作为以手性氨基酸为手性源和利用原位生成酮亚胺策略的延续,我们首次实现了铜催化环丙醇与酮亚胺的环丙烷开环加成反应,高效实现了哌啶螺环氧化吲哚骨架的不对称构建。机理研究发现,反应的有效催化剂为CuCl(Ⅰ)与β-双烯酮亚胺配体的络合物在反应中原位氧化生成二价铜物种;环丙醇开环加成反应可能经环丙烷自由基开环历程。该研究的创新点在于首次实现了环丙醇作为亲核试剂对酮亚胺的加成反应,扩展了环丙醇合成子的应用范围。
  (三)铜催化的C-H键氧化/环丙醇开环环合串联反应构建氮杂[3.3.1]壬烷桥环骨架研究
  基于环丙醇作为亲核试剂与酮亚胺加成反应的突破,我们以廉价的手性氨基酸为起始原料,实现了铜催化的C-H键氧化原位生成亚胺离子、环丙醇开环加成串联反应,高效实现了广泛存在于天然产物和药物分子中的氮杂双环[3.3.1]壬烷桥环骨架的不对称构建。以该方法为关键步骤,我们以9步的总步数高效简洁地实现了吲哚生物碱(?)-suaveoline的不对称全合成。机理研究表明CuCl2发挥了C-H键氧化和环丙醇开环加成两种催化作用。该研究的创新点在于:使用CuCl2为催化剂,空气为氧化剂,手性氨基酸为起始原料;底物范围广,能兼容不同取代的芳香(杂)环和环丙醇,以及能制备含有季碳手性中心的氮杂双环[3.3.1]壬烷以及氮杂双环[4.3.1]癸烷桥环结构。该项研究不仅提供了一种高效、价廉、绿色的桥环骨架构建新方法,也丰富了C-H键官能化反应。
其他文献
铜锌锡硫硒(Cu_2ZnSn(S,Se)_4,CZTSSe)半导体具有组成元素丰富且无毒,光学带隙连续可调,光吸收系数高等优点,被认为是新一代无机化合物薄膜太阳能电池的理想材料。不良背接触界面和开路电压损失大是限制CZTSSe薄膜电池效率提升的两个关键因素。本论文采用安全、环保的二甲基亚砜(DMSO)溶液法制备CZTSSe太阳能电池,针对CZTSSe电池的不良背接触界面和开路电压损失大的问题,通过
学位
红树林生长在热带和亚热带的海岸线或河口潮间区域,是陆地向海洋过渡的特殊生态系统,拥有巨大的生物量,是河口区域重要的初级生产力。红树林不仅可以抵御潮汐风暴、防堤护岸,还可以吸纳、截留、去除水体中的营养盐及重金属。随着全球气候变化,人类越来越关心环境问题,过去数十年,特别是工业氮肥的使用,使水体富营养化在全球范围内爆发,氮的迁移转化成为研究热点。作为陆源物质入海的过渡带,红树林对缓解氮污染扮演着重要角
学位
苯并[a]芘(BaP)是一种在海洋环境中广泛存在、具有免疫毒性和致癌性的多环芳烃代表性污染物。实验室前期研究发现,BaP暴露与免疫因子LPS刺激同样会引起真鲷和黑鲷抗菌肽hepcidin的表达,已知LPS通过免疫信号通路诱导的hepcidin表达与免疫应答相关,而BaP暴露引起的hepcidin表达是否也是通过相似的免疫信号通路及具有相似的免疫作用,鲜有报道。本研究选用海洋模式生物——海水青鳉为研
学位
随着中国工业的快速发展,工业污水中难降解有机污染物的含量逐渐增加,为我国水环境的治理带来了极大的挑战。Fenton水处理技术,尤其是非均相Fenton催化体系,对该类污染物具有优越的降解性能,对国家人民健康、环境生态保护、以及社会经济的发展都具有重要的意义。因此,开发高性能非均相Fenton催化剂已成为Fenton水处理技术的研究核心,而较低的有机物降解效率和H2O2利用率一直是阻碍其工业实际应用
学位
金属有机骨架(metal-organic frameworks,MOFs)材料是具有周期性网络结构的纳米材料,因其比表面积大、结构多样、性质独特,是目前新型功能材料研究领域的一个热点,已被广泛用于有机小分子的吸附与分离、传感、催化反应等领域。鉴于MOFs材料特有的结构和性能,将其用作化学发光反应催化剂是一个重要的研究方向。流动注射-化学发光法由于具有设备简单、灵敏度高、试剂和样品消耗少、分析速度快
学位
随着纳米技术和生命科学的发展,纳米材料在生物医学研究中发挥着越来越重要的作用,而纳米材料的生物安全性问题也越来越受到人们的关注。核酸分子,作为生命体最基本的物质之一,具有良好的生物相容性、高度可编程性以及强大的自组装能力。因此,核酸被广泛地用于各种纳米结构的设计和合成,并应用于化学、生物、医学等各个研究领域。核酸纳米结构,作为一种天然成分的纳米材料,具有明显优于其他纳米载体和治疗方式的优势,在纳米
学位
微藻具有生长快、生产力高及不占用可耕地的特点,加上其相对较高的脂质、碳水化合物和蛋白质含量,在能源日趋紧张、环境问题日益突出的21世纪越来越受到关注。花生四烯酸(ARA,C20:4ω6)是一种长链多不饱和脂肪酸(LC-PUFA),它是脑膜磷脂的主要成分之一,也是众多类花生酸的前体,具有重要的营养价值。紫球藻(红藻)富含ARA,然而,其ARA的大量积累通常发生在不利于细胞生长的条件下,限制了微藻合成
学位
木质纤维素生物质通过生物炼制可以转化为多种基础化学品,因此是替代传统化石能源的可再生资源之一。木质纤维素生物质是地球上最丰富的一类生物质资源,主要组分包括纤维素、半纤维素和木质素。在木质纤维素生物质中,半纤维素含量仅次于纤维素,是第二大可再生天然生物质高分子。半纤维素可以通过生物酶解制备高附加值低聚木糖(Xylo-oligosaccharide,XOS),也可以通过化学法转化为生物质基平台分子糠醛
学位
费托合成(FTS)是将以煤、天然气、生物质等为原料制备的合成气(CO+H_2)经催化反应生成低碳烯烃及清洁液体燃料的重要途径,其核心技术之一就是催化剂的研究与开发。本文采用共沉淀法制备了含有不同稀土金属助剂(La、Ce、Nd、Sm、Eu等)的Fe基催化剂,并采用X射线衍射(XRD)、低温物理吸附(N2-adsorption)、H_2程序升温还原(H_2-TPR)、CO/H_2/CO_2程序升温脱附
学位
经典的1,2-加成反应和1,4-加成反应(Michael Reaction)是构建C-C键的重要反应类型,而且多数产物能够有效地转化为具有重要生理活性的分子或反应中间体。随着手性合成化学的不断发展,催化不对称1,2-加成反应和1,4-加成反应已成为不对称催化研究领域的热点反应类型。本文主要围绕靛红酮亚胺和硝基二烯炔为反应底物在不对称有机催化中的应用,主要包括以下四部分内容。第一部分:分别对共轭体系
学位