深空光通信调制编码及探测技术研究

来源 :中国科学院大学(中国科学院上海技术物理研究所) | 被引量 : 0次 | 上传用户:liyon_88
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着深空探测活动的增加,传统的微波通信技术已满足不了未来深空探测中超大数据量的传输需求。而深空光通信技术是未来深空探测中实现大容量、高速率数据传输的关键技术,是未来深空测控通信的发展方向。大力发展深空光通信技术,将极大的推进未来的深空探测活动,有助于人类进一步了解宇宙奥秘、探索生命起源和利用太空资源。由于深空信道距离远、链路衰减大,需要高灵敏度的单光子探测技术、高效的调制及纠错编码技术。本文首先介绍了深空探测的背景及意义,之后介绍了深空测控通信技术,通过对深空微波通信和深空光通信的比较,总结了深空光通信技术的优势。接下来分析了深空信道的特点,对深空链路中的几何衰减进行了粗略的估算,对深空光通信中的关键技术进行了简单的介绍。通过对RSPPM、SCPPM和LDPC-PPM几种常用编码方式的性能比较,结合深空链路光子数匮乏、信噪比低、误码率高的特点,选择了纠错能力强、光子利用效率高的SCPPM编码方案,并在接收端采用高灵敏度的光子计数探测方式。其次,研究了SCPPM的编译码方法,编码器由外码(1/2码率的卷积码)、交织器和内码(累加器和PPM调制)组成。内码译码采用了联合解调和译码的方法来提高译码性能,外码译码采用卷积码的MAP译码算法,内码和外码之间通过常规的Turbo迭代交换外部信息。之后基于MATLAB语言编写了完整的编解码算法,并通过仿真研究了泊松信道模型下的译码性能,仿真结果显示在使用4PPM调制时,通过编码可将误码率从15%左右降至10-6以下。此外还研究了调制阶数、译码迭代次数以及编码效率等参数对通信性能的影响,并对PPM独立软解调译码和联合解调译码两种译码方法进行了比较,仿真结果显示使用联合解调译码方法的纠错性能更好,但是在高阶调制时,联合解调译码算法的计算复杂度较高。接下来研究了基于盖革APD单光子探测器的光子计数通信系统,由于该探测器在单次探测时不具有光子数分辨能力,信道模型由泊松信道退化为二进制非对称信道。推导了该模型下PPM解调的误码率表达式,结果发现该信道模型下存在着仅与噪声强度有关的误码率下界。之后根据BAC信道模型修正了译码时的信道似然比,通过仿真分析及实验验证,结果显示修正后的信道似然比具有更高的译码性能,在使用16PPM调制并且nb=0.1时,光子利用效率提升了约1.24d B。而当使用8PPM调制,nb=0.2时,光子利用效率提高了约4.23d B。最后针对无光子分辨系统中误码率较高、通信速率较低的缺点,提出了一种基于多路探测的通信方法,该方法可以减少死时间对通信性能的影响。首先分析了探测路数、探测器死时间所占时隙数对PPM解调误码率的影响,然后通过仿真分析以及实验验证,发现通过多路探测方法,探测器具备了一定的光子数分辨能力,能有效的降低误码率并提高通信速率。并且在使用多路探测方法时,当探测器死时间覆盖多个时隙宽度,随着信号强度的增加,误码率先下降后上升。这表明使用该方法时信号强度要适中,过大或过小的信号强度都会导致误码率增加。此外,由于接收端光子的到达具有不确定性,各支路探测器的输出脉冲不会同时输出,会存在前后时间上的抖动,本文针对此特点提出了一种基于多路探测的时隙同步方法,通过统计时隙内的上升沿个数来进行时隙同步,并取得了较好的同步效果。本文的研究对于深空光通信中系统设计以及调制编码探测方案的选择具有重要意义,本文所提出的多路探测系统为实现基于单光子探测的高速光通信系统提供了一种参考方法。
其他文献
单核苷酸碱基多态(single nucleotide polymorphism,SNP)是基因组序列中最为常见的遗传多态。在本论文中我们拟建立人类21号染色体中国人SNP数据目录和单倍型图谱,寻找人类与黑猩猩等灵长类动物的序列差异,并将SNP应用于复杂疾病(原发性高血压)致病基因的寻找,环境因子敏感基因(相同苯环境下更易引发苯中毒)的寻找和乙型肝炎(hepatitis B virus,HBV)病毒
新型疾病与癌症逐渐表现出早期诊断困难,晚期无法治愈的特点,迫切需要发展高灵敏探测技术实现对疾病早期超低浓度目标物的快速、准确诊断。由于具有灵敏度高、响应速度快、制备成本低廉、小型化可集成的特点,基于纳米材料半导体的生物传感器备受关注。特别是二硫化钼(MoS2)纳米薄膜生物传感器,相比于石墨烯和其它体半导体材料,其合适的禁带宽度在生物传感器应用中对生物目标物拥有更好的生物兼容性以及更低的探测极限,在
氧化钨(WO3)是一种极其重要的n型氧化物半导体功能材料,其禁带宽度为2.4–2.8e V。WO3纳米材料一般以非化学计量相形式存在,体结构带有不同程度的氧空位和缺陷,这种特性可以促进材料表面的气体吸附和脱附,使得WO3纳米材料成为半导体气敏传感器重要的研究对象。在过去的几十年内,为了提高传感器的综合性能,科研工作者在调控和功能化WO3的纳米结构方面做了很多工作,但在WO3纳米材料探测气体的内在工
由于短波红外辐射独特的波段特性,短波红外成像系统具有夜间可成像、受光线变化干扰小的优点。近年来,为了提升夜间等微光环境下获取图像的质量,使得安防、监控设备可以真正做到全天候有效运行,短波红外成像系统成为发展的新方向。但也正因为其波段特性特殊,短波红外成像系统获取的图像与常见的可见光红外图像具有较大的模态差异,在观察时与可见光图像相差较大,影响对图像中目标的观察及识别。在监控、安防应用中,对所获取图
癌症在全球范围内威胁着人类的健康,全球癌症患者当中,肺癌作为发病率第二(男性当中仅次于前列腺癌,女性当中仅次于乳腺癌),死亡率最高的一种癌症,对其早期诊断具有重要意义。临床上,影像学诊断信息对于肺癌的早期诊断和治疗预后都有很高的临床价值,而目前绝大多数关于肺部肿瘤的计算机辅助研究都是借助影像学信息开展的。随着医学技术的快速发展,医疗数据的种类和数量都在不断丰富和增加。由于肺部肿瘤诊断的复杂性,借助
短波红外(SWIR,short-wave infrared)的波长覆盖范围为1~3μm,处在红外波段中的反射波段。相比于中长波热成像,短波红外能够反映更多的物体细节,方便检测与识别;相比可见光,短波红外在穿透云雾、烟尘等有着出色的表现。短波红外因其独特的成像特点,在弱光成像、着火点检测、环境检测、矿藏探测、半导体检测、农作物检测、生物成像等领域有着广泛的应用前景,因此针对短波红外成像技术的研究具有
多光谱和偏振成像是目前和下一代红外相机的发展重点,与单纯利用光强度信息成像相比,窄带、多光谱成像和偏振成像能够提供更丰富的目标信息(光谱信息和偏振信息),能够确定目标的绝对温度,从而降低相机对大气条件的敏感度。多个相邻光谱通道的组合有利于复杂环境中掩埋目标的探测,人工目标(如金属或玻璃)通常具有与自然目标不同的偏振特性,获取偏振信息能够帮助人们有效识别人造物体,因此是提高识别效率和减少误报警的重要
自2002年,太赫兹量子级联激光器(Terahertz Quantum Cascade Laser,THz-QCL)问世以来,由于其能量转换率高、紧凑、轻便、易于集成等优点,成为了THz辐射源研究领域中的焦点。经过近20年的发展,THz-QCL在输出功率、最高工作温度、远场光斑、单模性质以及调谐范围等性能上得到了很大的提高。这些进步不仅得益于量子级联有源区的设计和外延生长技术的提高,同时也得益于人
随着红外成像技术的不断发展,红外成像系统现已具有探测距离远,探测灵敏度高,抗干扰能力强,可全天时工作等优点,在工业,安防及国防领域发挥了重要作用。在红外成像系统中,红外目标的检测与识别算法扮演了重要角色。近年来,国产处理器蓬勃发展,但其种类与性能依然与世界先进水平存在一定差距,因此,本文立足于现有国产处理器平台,围绕复杂背景下红外目标检测的客观难点,提出了一种可扩展的异构计算框架,并设计了对应的红
红外探测技术在海洋安全和海事监视领域有广泛的应用前景,是实现海面舰船高效监视的主要手段。在对海面进行连续监测的过程中,由于太阳照度的不断变化,海面舰船的表面温度处于动态变化的过程中。当舰船目标与海面背景的辐亮度差小于红外探测系统的辐射分辨率时,就会导致系统无法被有效探测目标,称为热交叉时期。热交叉环境是红外探测系统进行目标监视的主要难题,严重限制了红外系统的探测效能。针对这一问题,本文基于海面的强