论文部分内容阅读
基于核方法的自适应滤波(Kernel Adaptive filtering,KAF)是非常有效的非线性学习算法,已被广泛应用于系统辨识、信道均衡、噪声消除等方面。在这些信号处理过程中,人们认为大部分的噪声呈现高斯分布,因而在实际应用中,核自适应滤波算法大多采用反映二阶统计矩的最小均方误差(Mean Square Error,MSE)准则对模型进行学习。然而在真实的环境中,人们观测出大量的自然噪声都表现出非高斯的行为,例如水声噪声、大气噪声等。在过去十几年中,信息论学习(Information Theoretic Learning,ITL)获得较大的发展,其相关理论在非高斯信号处理中得到了非常广泛的应用。其中,信息论学习中的互相关熵(Correntropy)是衡量随机变量之间的局部的相似度。与MSE准则相比,基于互相关熵的优化准则能够从数据中提取更加丰富的统计信息,因此基于该准则的算法会更加鲁棒。本论文以最小二乘算法(Recursive Least Squares,RLS)为基础,提出基于互相关熵优化准则的核自适应滤波算法,并通过仿真实验对算法性能进行分析和验证。本论文的研究工作主要分为两个部分。首先,本文引入互相关熵,提出基于最大互相关熵(Maximum Correntropy Criterion,MCC)的核最小二乘算法(Kernel Recursive Maximum Correntropy,KRMC)。KRMC算法将输入空间的数据映射到特征空间,在特征空间中运用线性的算法学习滤波器权值。算法定义期望响应和输出信号的互相关熵,在每一次递归学习中最大化该互相关熵,直至算法收敛。与普通的核化最小二乘算法(Kernel Recursive Least Squares,KRLS)相比,基于最大互相关熵的核最小二乘算法利用高斯核函数削弱非高斯噪声对算法迭代的影响,有效地保证在非高斯环境中良好的算法性能。本论文通过混沌时间序列预测仿真实验与其他算法对比,验证KRMC算法的MSE性能,并探讨不同的互相关熵核宽度对KRMC算法的影响。接着,针对核自适应滤波算法普遍存在的网络节点线性递增的问题,提出基于量化方法的核最小二乘算法(Quantized KRMC,QKRMC)。算法建立网络节点字典,在线地对输入数据序列进行筛选,将满足判断条件的数据量化至当前网络节点字典中与之最接近的节点值。量化方法通过量化阈值灵活地控制QKRMC算法的网络结构,在保证算法良好性能的同时,尽可能地精简QKRMC的网络节点。本论文通过混沌时间序列预测仿真实验验证QKRMC算法的MSE性能,并探讨不同的量化阈值对QKRMC算法网络结构的影响。