论文部分内容阅读
随着科学技术的持续发展与进步,光电跟踪测量设备朝着大型化、复杂化、高速化、集成化以及自动化的方向不断迈进。其结构层次日益复杂,功能更加强大,各种信息技术、智能技术广泛应用其中。现有的故障诊断理论和技术面临着新形势下外场测试任务不断扩展的性能需求以及相关测量设备的高可靠性、维修性、智能化、实时性需求的严峻挑战。在此背景下,本文针对光电成像跟踪系统的非线性、动态性、复杂性、层次性、相关性和不确定性等根本特点,在认真探讨并分析各种国内外先进的动态系统故障检测与诊断技术的基础上,采用人工智能相关理论和实现技术,结合日益成熟的虚拟现实技术,研究构建基于虚拟诊断环境的智能故障诊断系统。主要研究内容和成果包括以下几个方面。
(1)基于产生式规则的智能故障诊断专家系统研究
论文对比分析国内外成熟的故障诊断技术、人工智能技术及虚拟现实技术,讨论了若干类故障检测和故障模式分类的诊断方法,重点研究比较应用于复杂动态系统的各种智能诊断技术。同时,运用故障层次化、专家知识分级处理等方法对设备故障从功能和结构上进行了全面分析,总结了设备的常见故障机理、特征及识别推理方法,同时分析比较跟踪设备各层级故障特点及关联耦合关系。在充分的数据和理论基础上,提出构建一种以虚拟诊断环境为平台,融合神经网络推理的诊断专家系统的技术方案和路线。
针对项目实际情况,研究了专家系统的组成结构、工作原理及相关实现技术,选择基于规则和框架的产生式诊断专家系统。其中,在知识表示方面,选择稳定性和表示能力强的产生式表示和框架表示法,同时结合多种故障树共同完成专家诊断知识的表示。而在推理机设计方面,采用了正反向两种推理策略,完成分阶段递进式诊断推理过程。
(2)基于BP神经网络的诊断专家系统推理技术研究
在推理诊断过程中,引入了BP神经网络技术,实现由单一推理控制策略转换为混合智能推理策略,避免了诊断专家系统自适应能力差、缺乏灵感、知识领域狭窄等缺陷。在对比分析拟牛顿法、弹性BP方法、共轭梯度法等相关BP网络改进算法后,设计了基于Levenberg-Maurquardt法的神经网络故障诊断推理方法,结合诊断专家系统的实现针对性地解决多故障并发和耦合关联难点,提高了系统鲁棒性、容错性、普适性及诊断推理效率。
(3)光电成像跟踪测量设备虚拟诊断环境研究
在智能诊断系统中引入虚拟现实技术,阐述了基于OpenGL的虚拟现实开发技术,包括OpenGL成像原理、建模技术、虚拟诊断环境构建、Billboard技术、纹理映射技术等相关关键技术。智能故障诊断系统虚拟诊断环境的创建,提高了系统实用性、直观性及整体性能。论文最后给出了系统相应的软硬件实现,并介绍了诊断专家系统的知识库、数据库、接口设计及关键技术。
本文旨在通过结合人工智能技术、虚拟现实技术以及分布式网络技术,研究构建基于虚拟诊断环境下的智能故障诊断系统,以保证和适应新形势下外场测量任务不断扩展的性能需求及相关光电跟踪设备的高可靠性、维修性、智能化、实时性需求。实践证明,在智能诊断系统中融入虚拟现实技术,具有良好的实用价值和广阔的应用前景。