【摘 要】
:
随着物联网(Internet of Things,Io T)技术的发展,越来越多的移动设备被接入互联网,但是移动设备存在着计算资源和电池容量有限的问题,无法处理计算量过大的任务。作为移动边缘计算(Mobile Edge Computing,MEC)的进一步扩展,雾计算网络(Fog Computing Network,FCN)将雾节点部署在网络的边缘位置来提供额外的计算和存储能力。这样移动终端可以选
论文部分内容阅读
随着物联网(Internet of Things,Io T)技术的发展,越来越多的移动设备被接入互联网,但是移动设备存在着计算资源和电池容量有限的问题,无法处理计算量过大的任务。作为移动边缘计算(Mobile Edge Computing,MEC)的进一步扩展,雾计算网络(Fog Computing Network,FCN)将雾节点部署在网络的边缘位置来提供额外的计算和存储能力。这样移动终端可以选择将任务卸载给邻近的雾节点,从而降低任务处理时间及能耗,大大提高了人们对应用服务的体验质量(Quality of Experience,Qo E)。本学位论文围绕着雾计算网络中的资源分配算法展开研究,并分别提出了基于节点均衡分簇的资源分配算法(Balanced Clustering and Joint Resources Allocation Algorithm,BCJRA),和基于多凸不等式约束交替方向乘子法(Multi-convex Inequality-constrained Alternating Direction Method of Multipliers,MIADMM)的分布式资源分配算法(MIADMM-based distributed resource allocation algorithm,MIADMM-DRAA)。本学位论文的主要工作如下:(1)提出了雾计算网络中的基于节点均衡分簇的资源分配算法。该算法主要分为节点均衡分簇模块和资源分配模块。节点均衡分簇模块充分利用了雾计算网络边缘行为的局部特征,综合考虑雾节点的计算资源、任务负载和地理位置,并定义了损失函数,采用基于K均值分簇的方法获得使损失函数最小化的分簇结果,令网络中的雾节点组成多个资源、任务负载和节点间距离均衡的簇。资源分配模块会在各簇内并行地优化任务卸载矩阵、计算资源分配矩阵和通信资源分配矩阵,降低簇内雾节点的最大时延和最大能耗,实现了雾计算网络中邻近雾节点间的协作。计算机仿真结果表明,在对雾计算网络进行节点均衡分簇后,有效降低了雾计算网络中资源分配问题的计算规模,减小了网络中的信息交互量,算法可以快速收敛,提出的BCJRA能够有效的降低各簇中雾节点的最大时延和最大能耗。(2)提出了雾计算网络中的基于MIADMM的分布式资源分配算法,该算法利用了雾计算网络分布式架构的特点,通过网络中雾节点间的协作实现了计算资源的分配,最小化网络时延和能耗。该算法基于排队论中的M/M/1队列模型对网络中的任务到达进行建模,推导了雾节点的时延和能耗,建立了最小化系统总开销的优化目标。该算法利用了MIADMM算法中变量交替优化可转为分布式执行的特点,根据网络中雾节点数量,将资源分配问题拆分为多个子问题,每个雾节点只求解其中的一个子问题,基站只起到了全局数据交换和广播的作用,从而降低了网络传输开销。仿真和分析结果表明,MIADMM-DRAA收敛速度较快,和现有算法相比,能够获得更低的网络开销。
其他文献
卫星作为现代军事、民事、航空领域的重要工具得到广泛应用。星载反射面作为星载卫星的重要设备之一用来收集或发射信号。目前星载卫星反射面一般制成抛物面形状,抛物面相较于其它几何构型能够产生强方向性的辐射场。反射面通常由蜂窝夹层板制成。蜂窝夹层板由上蒙皮、下蒙皮以及蜂窝芯层三个部分组成。蜂窝芯层胞元采用六边形蜂窝结构,六边形蜂窝胞元是典型的正泊松比结构,但随着近年来对负泊松比结构的深入研究,负泊松比的优越
近年来,体育训练、肢体运动康复领域对运动生物力学理论的应用越来越普遍,对微传感器数据采集技术则提出了更高的要求。现有的运动生物力学测量以运动传感器或光学传感器分析人体运动动作为主,还很少与表面肌肉电信号(surface electromyogram,s EMG)相结合,远不能满足体育训练、肢体运动康复领域对运动深层机理进行研究的需求。针对上述情况,本文开展了下肢运动信号及表面肌电信号同步采集系统的
自主驾驶汽车剥离驾驶环境中最不稳定的人的因素,可以有效地提高车辆安全性、清洁性、舒适性,被认为是汽车领域未来最重要的发展方向,其主要技术可分为感知、决策、控制三大部分。环境感知作为自主驾驶车辆关键技术中的一项基础性工作,对于提高自主车辆环境理解力,保障其行驶安全具有重要意义。现阶段感知算法严重依赖于强大的设备算力,很少考虑到自主驾驶系统的经济性需求,难以部署到嵌入式平台。同时,城市真实场景中行人、
随着物联网的发展,对于无线接收机提出了更高的要求。射频前端电路位于接收机链路前端,对于整个接收机的性能有重要影响。高性能宽带射频前端电路不仅可以改善接收机整体性能,而且会大大提高无线通信系统的灵活性。因此,基于CMOS工艺设计宽带射频前端电路具有重要的理论意义和应用价值。论文基于40nm CMOS工艺,研究并设计了一种适用于0.2-2.5GHz频率范围的宽带射频前端电路。它主要由低噪声放大器、缓冲
实时延迟线电路在电子通信系统当中有着广泛的应用,其主要功能是为信号提供一定时长的延时,以满足信号在时域或相位等方面的要求。伴随着半导体加工技术的进步,模拟有源结构的实时延迟线电路具有芯片面积小、易集成、结构简单等优点,受到了人们的广泛关注。在相控阵雷达的波束形成应用当中,由于模拟实时延迟线电路在带宽、延时精度等方面有着显著优势,用其替代传统相控阵雷达波束形成阵列中的移相器,可以有效地避免“孔径效应
随着无线通信技术的高速发展和数据流量的不断提升,对锁相环的性能提出了更高的要求,因此近年来诸如SSPLL、ADPLL、BBPLL、SPLL等新型的高性能锁相环成为了人们研究的热点,而将DTC应用于新型锁相环使得这些锁相环展现出更优的性能。本文将对基于DTC的小数型SPLL的关键技术展开研究,其中重点研究可编程整数分频器和DTC控制与校准模块。本文首先介绍了小数型SPLL的基本原理,详细分析了各个主
新型人工电磁材料拥有传统自然材料难以实现的奇异电磁属性,其结构由亚波长尺寸的电磁谐振单元按照某种方式排列而成。利用仿真工具合理地对亚波长单元的结构及其尺寸等进行设计,可以有效地控制其在一定频段内的等效电磁参数,进而有效调控电磁波的特性与传播状态。目前,新型人工电磁材料在诸多领域吸引了研究工作者的广泛关注,并被赋予极大的工程应用价值。基于人工电磁超表面的奇特电磁特性,本文对传统的漏波天线以及反射阵天
W波段毫米波雷达具备小型化较好,分辨率高,全天候工作等特点,广泛地应用于生命体征探测、安防监控、智能交通,特别是车载防撞雷达等领域。为了实现更好的性能,W波段毫米波雷达射频前端与器件一直是研究热点与难点。本文针对W波段毫米波雷达射频前端和器件展开研究,主要内容包括:研制了W波段毫米波三发四收射频前端系统,利用单片集成雷达芯片MSTR001作为核心,针对频率源电路、中频电路、微带天线阵、射频过孔以及
相控阵天线技术广泛应用于雷达、通信、侦收等领域,其显著特点是通过控制馈源相位改变波束指向。传统相控阵天线工作带宽窄,难以满足未来应用需求。约束相控阵天线工作带宽的关键要素之一即是天线单元的工作带宽,并且天线还需要兼顾机载等特殊应用平台低剖面的需求。因此本文针对宽带低剖面天线理论与应用展开深入研究,主要工作如下:1)设计了L型探针馈电天线单元:详细分析了单馈、双馈等L型探针馈电天线的性能,提出了介质
基站端配置大量天线的大规模MIMO技术是第五代移动通信(5G)的重要技术。本论文以大规模MIMO通信系统为背景,以提高系统效能为目的,对相关技术进行了研究。针对大规模MIMO系统中的近场效应问题,本文采用多端口网络技术对此进行研究,重点分析了近场条件下大规模MIMO系统解耦匹配网络(DMNs)的联合设计。此外,波束赋形技术是无线通信中重要的信号处理技术,能显著提高系统频谱效率,由于大规模MIMO系