论文部分内容阅读
混凝土结构由于耐久性不足,未达到设计寿命即发生病害,产生严重事故的现象十分普遍。氯离子侵蚀是导致混凝土结构耐久性破坏的主要原因,提高混凝土结构抗氯离子侵蚀的能力,对提高混凝土的耐久性具有相当大的现实意义。添加矿物掺合料是提高混凝土抗氯离子侵蚀的传统方法之一,大部分矿物掺和料仅从密实孔结构方面延缓了氯离子在混凝土内部的传输,从化学固化(吸附)氯离子的角度研究新功能材料有相当大的探索空间。介孔氧化硅材料作为一种新型无机功能材料,具有超高比表面积、大孔容、形貌及尺寸可控等特点,在化学吸附领域的应用十分广泛。而对于其在水泥浆体中吸附氯离子的研究尚为空白。为探索在水泥基中固化氯离子性能优异的材料,本文研究了介孔氧化硅材料在水泥浆体中固化氯离子的性能。本文采用水热法合成了一系列不同孔隙特征的介孔氧化硅材料,对其进行了结构表征,研究了其在水溶液中对氯离子的吸附性能,遴选出吸附效果最佳的材料;研究了温度、吸附剂浓度、氯离子浓度、pH值对其吸附氯离子能力的影响;分析了该吸附过程的吸附动力学以及吸附热力学;研究了不同龄期,不同氯离子浓度条件下,介孔氧化硅材料在水泥净浆以及水泥砂浆中对氯离子的固化能力。主要研究成果包括:(1)采用水热法成功合成SBA-15、MCM-41、KIT-6三种介孔氧化硅材料。表征结果表明MCM-41比SBA-15以及KIT-6具有更多的较小介孔,孔道结构更不规整,比表面积更大,达到1036 m~2/g。(2)在30℃,pH为6的情况下,MCM-41、SBA-15和KIT-6均在2h后达到吸附平衡,三者在水中对氯离子的吸附能力,MCM-41明显高于其他两种;MCM-41在水中对氯离子吸附的最优工艺条件是:温度为55℃,pH值为6,吸附时间为2h,Cl~-浓度为584mg/L,吸附剂浓度为1.0g/L,此时最大吸附量为188.18mg/g;MCM-41对氯离子的吸附动力学符合准二级动力学方程,属于复合吸附过程。吸附等温线更符合Langmuir方程。(3)MCM-41对氯离子的吸附性能,在水溶液中最佳,在水泥浆体中吸附效果略低于在水中的吸附效果,在水泥砂浆中的吸附效果略低于在水中的吸附效果;养护龄期越高,MCM-41在水泥浆体(净浆、砂浆)中对氯离子的固化量越高;随着水泥浆体(净浆、砂浆)中氯离子浓度上升,MCM-41对氯离子的吸附量相应上升。