可控延伸法构建sgRNA文库在表观遗传元件功能注释中的应用

来源 :浙江大学 | 被引量 : 0次 | 上传用户:qqqqq721106
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
表观基因组是一系列与DNA和蛋白有关的化学修饰,它们可在不改变DNA序列的情况下对基因表达进行调控,并在发育和疾病发生过程中发挥重要作用。当前的技术已经允许研究人员对实验样品进行常规的表观基因组表征,然而我们对表观遗传元件功能的理解到目前为止仍显不足。基于CRISPR基因编辑技术的筛选文库对阐明全基因组范围内的表观遗传元件的生物学功能具有重要意义,但是CRISPR筛选需要构建庞大的sgRNA文库,其商业合成成本高,极大的限制了该技术的广泛应用。在本研究中,我们开发了一种新型、高通量、简单且低成本的基于DNA模板可控延伸(CTDE)原理快速转换合成sgRNA文库的方法。基于CTDE方法合成的sgRNA文库可以覆盖模板DNA中98.47%的有效CRISPR/Cas9靶向位点,并且超过99%的sgRNAs靶向位点紧邻一个PAM序列。基于本研究开发的CTDE方法,我们取得了以下几项突破。首先我们以鼠胚胎干细胞(mESCs)中H3K4me3和CTCF蛋白结合的DNA,和人肝癌细胞系(HepG2)中H3K4me3蛋白结合DNA为模板,合成了含有2,800,000个sgRNAs的筛选文库。然后通过CRISPR筛选和基于CFD得分的过滤,我们成功鉴定了影响mESCs和HepG2细胞增殖的12,887个H3K4me3和2,206个CTCF的必需的表观遗传学元件,实现了首次对哺乳动物细胞中H3K4me3和CTCF元件的功能性表观基因组注释。而且mESCs CTCF元件的筛选结果显示mESCs保留了大部分的非必需的细胞特异的CTCF元件,说明这些元件可能对于干细胞的多能性的维持很重要。通过表征HepG2细胞中重要的H3K4me3元件,揭示了功能性表观基因组注释在癌症研究中的重要性。
其他文献
稻米、花生和小麦等是中国及世界各国消费的重要农产品作物,但它们极易在收获和贮藏中遭受真菌侵染。现有的传统检测农产品真菌污染的方法通常是耗时的,并且对样品产生了破坏,使样品不可能进行大规模的无损检测和实时分析。已有大量研究表明,农产品在遭受微生物污染时释放的挥发物会发生明显变化,因此,可检测农产品释放的挥发物对农产品的真菌侵染情况进行诊断和预测,而电子鼻和顶空气相色谱-离子迁移谱(headspace
金属有机框架材料(Metal-organic Framework)由于具有高比表面积、高孔隙率、孔道尺寸可调等优点,在吸附分离、储能、催化等领域具有广阔的应用前景。但是,MOF晶体材料力学性能差,难以加工处理,阻碍了 MOF的工业化进程;同时,大部分MOF的纯微孔结构不利于客体分子的传质,制约了 MOF在吸附、催化等领域的大规模应用。针对此,通过引入力学性能好、易于加工处理的聚合物,可制备出MOF
生物多样性与生态系统功能(BEF)关系在近几十年来一直是生态学的前沿问题。近来,越来越多的工作深入到外部干扰(如加氮和增温)对BEF关系的影响。碳纳米管等工程纳米材料的应用和生产不断增加,废弃纳米材料进入生态系统后影响生物有机体和生态系统过程及功能,已成为生态系统的一类新型干扰。然而,已有的研究主要关注碳纳米管对植物单种(特别是作物)的影响,缺少关注碳纳米管对野生植物和多种共存生态系统的结构及植物
DNA复制的保真性与完整性对于维持基因组稳定性至关重要。然而DNA复制常常会遭受来自细胞内外的复制压力而停滞,如果无法及时重新起始,将造成复制叉崩塌,影响基因组稳定性甚至导致细胞死亡。在高等真核生物中,复制叉翻转是应对复制压力的关键调控机制,目前的研究认为该过程主要由SNF2家族的DNA转位酶HLTF、ZRANB3、SMARCAL1等蛋白催化。在复制叉发生翻转时,由于转位酶对DNA链的反向牵引,两
核仁的主要功能是负责核糖体RNA(rRNA)合成、加工成熟,以及核糖体大小亚基生成和组装。Bms1蛋白是核糖体小亚基组装复合体中的重要组成,它作为一个GTP酶,与Rc11蛋白形成复合体参与rRNA前体A2位点的剪切。之前的研究发现在斑马鱼bms1l突变体中存在肝脏发育缺陷,在人类中也报道了由于BMS1蛋白变异而导致的先天皮肤发育不全,这些组织器官的异常发育都是由于细胞周期受阻导致的。然而目前对于B
铁(Fe)是生物体必需的微量营养元素,但过量时又会对细胞产生毒害。以往的研究对植物根系铁吸收和体内稳态的调控机制已经有了较为深入的了解,在作物铁营养的生物强化方面也取得了一定进展。但种子发育过程中铁的装载,以及其中的调控机制仍知之甚少,而这对深入挖掘有效的生物强化铁营养新途径非常关键。在对拟南芥转录因子突变体进行缺铁表型筛选时,本文发现一个属于拟南芥YABBY转录因子家族成员、调控胚珠外珠被极性生
“遗传补偿效应”(genetic compensation response,GCR)是首先在斑马鱼中发现的,一种新的遗传鲁棒性机制,是指当敲低某一个基因时有明显的表型,但此基因的遗传敲除突变体反而没有表型。在拟南芥、小鼠等其它模式生物中都观察到了这一现象。GCR虽然对于机体的存活具有重要意义,但是却阻碍了基因功能的研究。2019年,Stainier实验室和我们实验室同时发表各自研究结果,揭示GC
内质网与线粒体接触位点(ER-mitochondria contact sites,ERMCSs)是位于线粒体与内质网之间的动态结合区域,其在调控钙信号通路、脂质转运、线粒体动力学以及自噬小体的形成等生物学过程中都发挥着关键作用。尽管ERMCSs引起了人们的广泛关注,但是在高等动物中,其分子结构、具体功能、调控机制以及生理意义都还未被全面揭示。在多种人类神经退行性疾病中都存在ERMCSs的异常,例
哺乳动物卵泡生长过程中,卵母细胞转录翻译活跃,胞质中转录并积累大量的母源性m RNA和蛋白质,至卵母细胞生长完全,染色质凝集为染色体,卵母细胞转录沉默。卵母细胞减数分裂恢复、成熟及合子基因组激活前的胚胎发育都受胞质中的母源物质调控,但母源转录本的调节机制及功能研究一直存在很多空白。MPF和MAPK信号通路在调控减数分裂细胞周期进程中发挥重要作用,MPF由CDK1和cyclin B1两部分组成,MA
在中枢神经系统中(Central Nervous System,CNS),少突胶质细胞(Oligodendrocytes,OLs)包裹缠绕神经元的轴突形成髓鞘,促进动作电位的传导速率和保持轴突的完整性。这一过程对于维持正常大脑的功能是极为重要的。OLs和髓鞘的异常可造成多发性硬化症等脱髓鞘疾病和精神性疾病,如重度抑郁症和精神分裂症等。越来越多的证据表明轴突的髓鞘化过程依赖于轴突与OLs之间的相互作