【摘 要】
:
TMEM16A通道(又名钙激活氯离子通道,Ca CCs)是一种受胞内钙离子和膜电位双重调控激活的氯离子通道,它广泛分布在各类腺体、听觉和光感受器与肌肉组织中,具有重要的生理功能。该通道功能或表达异常与癌症、先天性肌强直、胃肠动力不足、囊性纤维化病等多种疾病密切相关,有望成为相关疾病治疗的药物靶标。以离子通道为靶点的靶向药物筛选需要耗费大量的人力物力。目前分子模拟筛选是一个省时省力的良好途径。如果我
【基金项目】
:
国家自然科学基金(81830061); 天津市自然科学基金(19JCYBJC28300); 河北省自然科学基金(C2018202302);
论文部分内容阅读
TMEM16A通道(又名钙激活氯离子通道,Ca CCs)是一种受胞内钙离子和膜电位双重调控激活的氯离子通道,它广泛分布在各类腺体、听觉和光感受器与肌肉组织中,具有重要的生理功能。该通道功能或表达异常与癌症、先天性肌强直、胃肠动力不足、囊性纤维化病等多种疾病密切相关,有望成为相关疾病治疗的药物靶标。以离子通道为靶点的靶向药物筛选需要耗费大量的人力物力。目前分子模拟筛选是一个省时省力的良好途径。如果我们可以得到离子通道的药物结合口袋,并基于结合口袋进行分子模拟药物筛选,则能进一步提高效率。本文旨在通过对TMEM16A通道小分子调节剂与该通道相互作用模式的研究,寻找通道药物结合口袋,为以后的TMEM16A通道靶向药物筛选提供指导和帮助。本文以TMEM16A通道蛋白冷冻电镜得到的三维结构(PDB ID:5OYB)为模板,构建了TMEM16A的完整结构,从TMEM16A调节剂中筛选了9种小分子药物,通过研究它们与TMEM16A通道的相互作用模式来反推该通道的受控构象变化的位点和药物结合口袋,希望通过以上研究为将来开展以TMEM16A通道为药物靶点的创新药物研发提供理论指导。本文所取得的结果如下:1、基于冷冻电镜的结构,构建TMEM16A通道完整序列的全原子结构,并将其在膜、水分子和离子的环境下进行动力学平衡,得到其优化状态。2、从现有的小分子调节剂中选择起效浓度低的9种小分子,与TMEM16A进行对接,并分析小分子与通道的相互作用模式。结果表明,9种小分子形成两种类型调节剂:通过堵塞孔道抑制通道功能的阻断剂和可能通过某种方式干扰钙离子与其位点结合而抑制通道激活的抑制剂。3、通过分析阻断剂与通道相互作用模式,发现大部分小分子结合于孔道上部由7个氨基酸残基(ASP383、LYS384、THR385、ALA523、ASN533、ARG535、GLU624)形成的结合口袋,这些氨基酸残基都是影响抑制效果的关键位点,这个结合口袋可用于TMEM16A通道抑制剂筛选。
其他文献
随着国家对基础设施建设的加大投入,近些年来生产型企业的生产设施建设发展迅猛。原煤仓作为储存原煤的重要构筑物被普遍应用于选煤厂及火力发电厂,其基本功能是储存原煤,并使各个运输、使用环节能力相匹配,起到缓冲作用。加之目前国家对环境保护的要求越来越高,封闭式原煤仓的建设进入了一个高速的发展期。但近些年,各地不断的出现原煤仓在生产运营过程中发生了仓壁砼撕裂及破损等严重的质量事故,给企业的正常生产造成了巨大
目前,水资源短缺和温室效应问题严重制约了人类社会的发展。为了解决两大环境问题,课题组前期开展了化学法海水脱钙固碳的研究,但存在引入外来碱源、成本较高的缺点。在此基础上,本课题开发了双极膜电渗析海水脱钙固碳工艺,分别探究了单膜组离子迁移规律和工艺优化条件,并对此工艺的连续运行进行了经济分析,实现双极膜电渗析海水脱钙固碳。离子迁移速率决定了盐室中的离子浓度、反应速率和膜污染速率。因此,首先探索了体系下
藏红T(Safranine T)是最常用的合成吖嗪染料之一,已经被广泛应用染料工业中,然而,长期接触ST可导致胃肠道不适、口腔粘膜刺激、咽喉不适、皮肤损伤等影响。因此,许多研究者致力于对水资源环境中ST去除的研究。本文分别采用了PbO2电极做阳极对ST模拟废水进行电催化氧化降解以及采用外加双氧水的电-Fenton法对ST模拟废水进行降解,并分别探究了两种不同方法下对ST废水降解的最佳条件。首先,采
近年来,随着现代光学制造和光通讯技术的进步,对高效率可调谐的光栅的需求进一步加深。液晶由于具有介电和光学各向异性,在电场作用下可以实现对入射光的相位调控,是制备高效率可调谐光栅的理想选择。然而,传统向列相液晶光栅较慢的响应速度(~5 ms)已经成为阻碍液晶光栅性能提高的关键技术问题,开发快速响应的新型液晶光栅势在必行。聚合物稳定液晶具有亚毫秒的响应速度,为研究新型液晶光栅提供了有利条件。至今,针对
液晶是介于液体和固体之间的一种既具有液体的流动性,又具有晶体的各向异性的光学媒介。随着科学技术的发展,液晶在显示器、传感器、滤波器、激光器等诸多领域得到了广泛的应用。但是,传统的液晶显示器的响应时间通常在几毫秒甚至十几毫秒,响应速度慢是制约液晶材料及其器件发展的关键技术问题之一,这使得具有快速响应的液晶材料和器件成为液晶光电子领域的一个研究热点。球状相是利用手性分子诱导液晶分子自组装而形成的具有亚
当前工业的迅猛发展导致了能源消耗和环境污染等亟待解决的问题。1821年发现的塞贝克效应和1834年发现的帕尔贴效应,为人类研究热电转换技术提供了理论依据,热电设备可以将热能和电能进行直接转换。原则上,这些设备可以使用任何热源,包括太阳能和废热。因此,对于材料领域来说,热电材料在可持续节能技术的发展中起着关键作用。本文采用第一性计算原理方法对half-Heusler化合物材料进行了电子结构及热电输运
近年来,免疫疗法在控制癌症中所发挥的作用引起了人们极大的兴趣。免疫疗法治疗效果依赖于T细胞对肿瘤细胞的识别,而作为专职的抗原呈递细胞,树突状细胞在激活T细胞方面起非常重要的作用。树突状细胞的主要功能是有效地摄取和呈递抗原。另外,它还能够表达共刺激分子,通过迁移到淋巴组织来激活T细胞进而启动免疫反应,因此是产生特异性抗肿瘤免疫的理想靶标。本文通过理论分析和数值计算对树突状细胞在肿瘤免疫系统中的作用进
鼠李糖脂是由假单胞菌分泌的一种糖脂类生物表面活性剂,具有无毒性、不致敏、可生物降解等优点,在石油开采、绿色农业及医疗领域展现出极大的应用前景。但是,鼠李糖脂的生产成本高和下游分离难度大等问题限制了其在工业中的大规模应用。因此,为了降低鼠李糖脂的生产成本,开发节能、环保、高效的鼠李糖脂分离方法成为研究热点。本文将从优化培养基碳源方面入手来降低鼠李糖脂发酵生产成本;并应用泡沫分离联合酸沉淀方法对发酵生
在J.H.Jiang、A.Fernández-Nieves等人的实验启发下,基于Landau-de Gennes理论,本文模拟了球形液晶微滴中理想同轴结构、双极结构、径向结构和逃逸同轴结构的偏光显微图,研究了向列相逃逸同轴结构球形液滴和向列相理想同轴结构的精细结构、尺寸效应以及它们在电场作用下的结构转变和动力学过程。模拟得到的同轴结构、双极结构、径向结构球形液晶微滴的偏光显微图与实验观察到的偏光显
快速响应是液晶显示器(LCD)的最关键要求之一,有利于减少运动图像的模糊和串扰问题,随着人们对液晶显示画面品质的要求越来越高,亟待解决的问题之一就是响应时间问题。负性液晶的响应时间较快,同时具有高的电压保持率、高清亮点和宽视角等优点,因此研究负性液晶响应性能有着很重要的意义。本文主要通过对负性液晶动态响应时间的测试以及γ-Fe2O3纳米粒子掺杂和过电压与下冲电压驱动技术设计,探究负性液晶响应性能的