论文部分内容阅读
随着互联网的发展,大规模开放式线上课程的涌现打破了传统教学方式中的时空约束,为优质的教学资源创造了良好的传播环境。尽管线上的教学视频可以反复使用,但其他的教学事务如将学生划分为小组来完成团队型教学任务等,均需建立在对参与课堂的学生的了解上。而线上课堂中学生基数大和师生间缺乏现实互动等特点限制了教师在这些教学事务上的发挥,既耗费了教师宝贵的时间又没有达到理想的教学效果。针对此问题,本文对大规模开放式公开课中的学生均匀分组问题进行研究,提出了基于浮动范围的学生分组算法和基于存储函数的分组算法,减轻教师的线上教学任务,促进线上课堂向全自动化的无教师式课堂发展。具体地,本文首先基于协同学习理论对学生分组后的收益进行量化,形式化定义学生均匀分组问题,并通过分析说明该问题为NPC问题,缺乏高效的精确解法。随后,本文基于遗传进化算法提出迭代交换分组框架,将学生均匀分组问题转化为求每轮迭代中的可交换学生问题。为了提高迭代交换分组框架的求解效率,本文对每轮迭代计算过程中的成绩浮动收益函数和均值浮动收益函数进行分析。基于均值浮动收益函数的单调性和可迭代计算性提出基于浮动范围的分组算法。基于浮动范围的分组算法综合使用二分搜索以及递推计算等技巧,仅需计算一个点就能得到学生成绩浮动范围,将平凡的迭代交换算法的时间复杂度从O(kn~2(n/m))降低至O(kn~2)。但其在计算可交换学生对时仅对小组提升收益进行定性分析,使得该算法在计算小组收益方面仍存在提升的空间。为此,本文对学生迭代分组过程中的冗余计算进行详细分析,结合均值浮动收益函数的向量化存储特性提出基于存储函数的分组算法。基于存储函数的分组算法以少量存储空间消除大量的冗余计算开销,在每轮迭代过程中通过对提升收益的定量分析得到该轮中全局最优的可交换学生对。将平凡的迭代交换算法的时间复杂度从O(kn~2(n/m))降低至O(kn~2lg(n/m)),保证了算法的迅速和稳定收敛。最后分别在真实和人工数据集上对本文提出的两个学生均匀分组算法进行实验评估,实验结果表明,本文提出的基于浮动范围的分组算法和基于存储函数的分组算法具有很高的效率,且在分组结果的收益上均优于现有的大多数分组算法,这种收益的提升与学生成绩集合的具体分布无关。此外,本文还设计了灰度矩阵图对各种算法的分组结果进行可视化分析,验证本文提出的算法在分组结果上具有各小组收益均衡、小组的leader和follower间具有明显的分界线等特点。