【摘 要】
:
以水为能量源的技术——水伏,通过利用水在特定材料表面的物理化学作用产生电能的新型能量转化技术,凭借其低成本、稳定可控以及无需外界能量介入的优势已经引起了人们的广泛关注,尤其是近年来被频繁报道的收集水蒸发时能量的硅基水伏器件,相比之前的器件,功率密度已经有了极大的提高,但是硅基水伏器件的性能仍然受限于硅纳米阵列的长度;另外,利用绝缘体作为功能材料的器件——纳米摩擦发电机(TENG),可以利用水的机械
论文部分内容阅读
以水为能量源的技术——水伏,通过利用水在特定材料表面的物理化学作用产生电能的新型能量转化技术,凭借其低成本、稳定可控以及无需外界能量介入的优势已经引起了人们的广泛关注,尤其是近年来被频繁报道的收集水蒸发时能量的硅基水伏器件,相比之前的器件,功率密度已经有了极大的提高,但是硅基水伏器件的性能仍然受限于硅纳米阵列的长度;另外,利用绝缘体作为功能材料的器件——纳米摩擦发电机(TENG),可以利用水的机械能输出瞬时电能。但是这两种器件都只能同时从单一能量源中收集电能,限制了应用范围。针对限制水伏器件输出的问题,本文首先对硅基水伏器件中硅纳米阵列的结构进行了探究,增加了纳米阵列的长度,并测试了改善后的水伏器件的性能。此外,将硅基水伏器件和TENG进行了集成,实现了同时对水蒸发释放的能量和对水中机械能的采集。本论文的主要研究内容如下:1、利用湿法刻蚀研究了倾斜硅纳米阵列的制备方法。使用不同的基底,刻蚀得到的硅线与基底会形成不同的角度。使用扫描电子显微镜对硅线进行表征,发现在(110)晶向上可以获得形貌均一且具备更长通道的倾斜硅纳米阵列(45 μm)。通过调节镀银液中硝酸银的浓度以及刻蚀液中双氧水的浓度,着重调节了倾斜硅纳米阵列的形貌,这对于接下来的硅基水伏器件性能将起到至关重要的作用。2、基于倾斜硅纳米阵列的水伏器件的器件构筑及电性能研究。以不同长度和掺杂浓度的硅纳米阵列为功能层制备出水伏器件,并进行了电学测试。当使用的高掺倾斜硅纳米阵列长度达45μm时制备的水伏器件信号达到最大,开路电压达到500 mV,短路电流达到了近10μA/cm2,对应的功率达到了 0.9μW/cm2。另外,由于倾斜硅纳米阵列本身的形貌特征,导致器件中的液态水能够维持较长的时间,使得器件拥有更好的湿气响应,为硅基水伏器件在未来的实际应用提供了更多可能性。3、将水滴驱动的摩擦纳米发电机和水伏发电器件进行了集成。对摩擦纳米发电机中的摩擦层进行了形貌研究,并探究了摩擦层所选材料和电极材料对摩擦纳米发电机最终输出的影响。控制了水滴的下落高度以及大小,最终获得了 200 V的开路电压以及60μA的短路电流,对应功率密度达到了 2.5 W/m2。同时,采用织物碳为上电极的水伏器件可以持续产生550 mV的开路电压以及30 μA/cm2的短路电流密度,最大输出功率密度达到了 80 mW/m2。利用硅基水伏器件能够收集水蒸发能量的特点和TENG收集水滴动能的特点,通过一个公用电极将两种器件集成到了同一个器件上,实现了可同时从水中收集不同形式能量的器件制备,并展示充分利用水滴的动能和热能的器件应用,为从自然雨水中高效收集能量提供了额外的研究思路。
其他文献
活性氧(Reactive oxygen species,ROS)作为一种含氧的化学活性自由基,在生物体内的细胞信号转导和体内稳态中发挥着重要作用。然而,ROS水平过高可导致细胞重要组分发生氧化损伤。因此,体内氧化还原的平衡与生物体的疾病甚至生命等息息相关。众所周知,许多炎症组织中会积累过量的ROS从而进一步加剧炎症反应,通过消除并平衡炎症组织中的氧化应激成为炎症治疗的有效策略之一。与此同时,通过依
温度变化与人们日常生活息息相关,温室效应、极端反常气候以及特种防护服的闷热感等都会严重影响人体身心健康。调温织物可以自发地进行温度调节为人体提供舒适的穿着体验,其所使用的相变微胶囊是一种可循环利用的环保型智能材料。相变微胶囊的包覆率和织物的导热性能会直接影响调温织物的蓄热性能和调温效率,是其发挥蓄热调温优势的关键。有机壁材相变微胶囊包覆率高,导热性能差,研究发现通过无机材料改性能够显著提高有机壁材
失信惩戒作为治理信用危机的有效手段,在解决失信治理难题、维护社会信用秩序、形成全社会守信遵约方面发挥重要作用。但是由于我国缺乏统一的社会信用立法,目前实践中采取的是地方先行创设试点的立法方式对失信惩戒以及失信行为作出规定,导致规范层面对失信行为的认定存在泛化现象、缺乏边界限制。将民事违约行为、轻微违法行为、道德行为、不文明行为等本不属于失信的行为规定为失信行为。而司法实务并没有完全依照法律文本将此
在云计算、大数据、互联网产业方兴未艾的大好形势下,自动驾驶技术的发展也一日千里。在自动驾驶领域,除传统车企之奔驰、丰田、福特、吉利等斥巨资进行大力研制,互联网科技公司之谷歌、腾讯、百度、华为等也争相参与其中,加之以电动车及能源而闻名的后起之秀——特斯拉异军突起,该行业可谓是千帆竞发。但与此同时,自动驾驶汽车的特殊性质也带来了诸多问题,如由其引发交通事故侵权之责任主体的认定问题便是法学领域的关注焦点
流量作为过程控制重要参数,在日常生活以及工业生产过程中,只要涉及到对流体的监视和控制,就离不开对流体流量的测量,而超声波流量计作为一种新型的流量计量工具,其应用范围广泛,精准度高于常用的机械式计量仪器,同时具有较强的抗外围自然环境能力,为了保障超声波流量计长时间高精度测量流量,就需要有稳定电源来维持,由于超声波流量计大部分都是内部干电池供电,而超声波流量计是一个高集成多系统的计量仪器,由于普通干电
量子点(quantum dots,QDs)半导体纳米晶体具有荧光量子产率高、发射光谱连续可调、发光半高峰宽窄、光化学稳定性高等特点,被广泛应用于太阳能电池、光电探测器、生物标记检测和发光二极管等领域,其中量子点显示与照明技术更是成为了当下研究的热点之一。然而,量子点表面含有大量长烷基链有机配体,虽然有机配体的存在可以提高量子点溶液的稳定性,减少QLEDs的漏电流和增强其光学稳定性,但是由于有机配体
刺激响应性药物控制释放体系可以用于药物的靶向递送和按需释放,其能在提高药物治疗效果的同时减小副作用,因而可用于治疗多种疾病。随着现代纳米技术的不断发展,用来构建控制释放体系的载体越来越多。介孔硅纳米颗粒(mesoporous silicananoparticles,MSNs)由于其比表面积大、尺寸和孔径易调节、易合成、易修饰、生物相容性好等优点,成为了一种具有前景的药物载体。本论文以介孔硅(MCM
放射诊疗等核技术应用在医疗、工业等领域给人类带来了很大的便利,然而电离辐射对人类健康的影响逐渐成为了一个重要问题。短期内受到大剂量电离辐射后,人体会出现急性放射病。根据受到剂量的差异可以简单分为急性骨髓型放射病、急性肠型放射病、急性脑型放射病。急性骨髓型放射病主要表现为贫血、恶心、呕吐等症状;急性肠型放射病主要症状为腹痛、便血等;急性脑型放射病患者会出现昏迷、脑出血等症状,严重者可当场死亡。急性放
实验室尘埃等离子体一般是指含有微米尺度尘埃颗粒的部分电离成等离子体态的气体。由于尘埃颗粒所携带的电荷量较大,颗粒间势能一般大于其动能,即形成强耦合等离子体,大量尘埃颗粒表现出典型的固体和液体的性质。在等离子体放电腔中,尘埃颗粒可通过电场悬浮并限制在等离子体鞘层中,并且自组织形成一个单层悬浮,即二维尘埃等离子体。更有意义的是,实验中二维悬浮中每个尘埃颗粒的运动轨迹,可以通过高速相机直接记录和精确追踪
有机半导体中少数载流子陷阱态的存在通常被认为是导致有机光电晶体管高光响应的重要原因之一。然而,由于有机半导体中少数载流子陷阱态来源尚无定论,造成器件光响应增强机制不明确,给器件的理性设计与优化带来了挑战。为此,本文重点研究了有机半导体中少数载流子陷阱态的起源以及其对光电晶体管光响应增强的机制,并以此为指导设计了一种新型光电晶体管器件结构,实现了其在弱光探测中的应用,具体研究如下:一、Dif-TES