论文部分内容阅读
以某燃煤电厂350MW循环流化床(CFB)机组在深度调峰下的热电解耦系统作为对象,进行研究分析。通过理论分析现有的热电解耦技术以及汽轮机侧的能量流动模型,确定了实现该厂深度调峰,热电解耦的技术手段为低压缸切缸。在切缸实际运行过程中,调节方式仅仅是依赖于热控运行人员手动来进行的,并且在调节过程中需要同时兼顾热网要求的负荷变化以及中排压力的限制,因此需要一定量的人力支持,不同工作人员的操作熟练度以及操作习惯也会产生调节效果差异,造成机组的运行不稳定。此外常规CFB机组负荷在175MW以下时一般都无法进行调频,因此实现同类CFB机组冬季供暖模式下热电解耦系统更加安全稳定运行以及同时具备调峰、调频能力的关键是解决低压缸切缸系统自动调节与控制的问题。常规的切缸过程中具有较大的不确定性,一般运用切缸灵活性技术改造的机组,由于先进的智能控制算法应用于当前电厂的DCS系统需要外挂智能优化站,考虑系统的安全和受机组控制系统实际现场软硬件条件的影响,这些智能算法难以进行嵌入实施。针对这种情况,将控制理论,专家经验和实际工程运行项目相结合提出一种适应于现场实施的单模三态切缸自动调节控制系统,主要内容包括如下:整个自动控制系统以中、低压缸连通管道旁路(BPV)阀门的调节控制展开,具体涉及冬季供暖期模式下的供热抽汽(LEV)阀门,中、低压缸连通管道主路(CV)阀门,中、低压缸连通管道旁路(BPV)阀门的三态调节模式,在保证核心控制四要素:电负荷、热负荷、中排压力、低压缸进汽压力安全稳定的基础上,抽汽调频由BPV阀控制,中排压力由CV阀控制,供热量由LEV阀控制。通过设计控制逻辑并将其与艾默生DCS系统相结合,经现场调试运行,该切缸系统自动化程度提高的同时,使得在深调工况下,也能够快速调频。实现了供暖模式下的切缸稳定运行、快速调频,并将对电厂的经济性提高起到一定的作用。本课题的研究成果已成功应用于一台350MW的CFB机组#1机低压缸切缸系统,应用效果较为显著,并且具有一定的推广应用前景。