【摘 要】
:
随着移动终端的发展,智能手机以它强大的功能吸引了非常庞大的用户,其中Android系统因为其开源、自由的特性深受开发人员的喜爱,占据了很大的市场份额,但这也为安卓恶意软件敞开了大门,所以研究一个有效的恶意软件检测方法非常有必要。目前通过流量分析来检测恶意代码的研究并不多,常见的Android恶意软件识别与分类方法多是基于静态程序分析,通过分析Android软件的API调用、权限等特征来识别和分类。
论文部分内容阅读
随着移动终端的发展,智能手机以它强大的功能吸引了非常庞大的用户,其中Android系统因为其开源、自由的特性深受开发人员的喜爱,占据了很大的市场份额,但这也为安卓恶意软件敞开了大门,所以研究一个有效的恶意软件检测方法非常有必要。目前通过流量分析来检测恶意代码的研究并不多,常见的Android恶意软件识别与分类方法多是基于静态程序分析,通过分析Android软件的API调用、权限等特征来识别和分类。此类分析方法需要对软件进行逆向工程、反编译等操作且容易被基于混淆代码的恶意软件轻易的绕过检测。而本文采用动态分析的流量分析方法,通过获取Android软件运行期间产生的流量,并使用机器学习和深度学习对Android恶意软件进行识别和分类,该方法具有识别及分类准确率高,灵活且适用性强以及对于基于代码层面的静态混淆具有抵抗力的优点,本文主要工作包括以下几点:1、选择机器学习算法构建有效的流量指纹检测模型,并且该模型还适用于加密流量。我们模拟了两种场景来分别区分良性流量和恶意流量并对恶意流量的类别进行了区分。为了更好地区分恐吓类和广告类这两种混淆度较高的模糊流量,我们加入了一层额外的混淆分类器来帮助进一步进行恶意软件分类。该框架主要包括应用程序通信流量获取、流量文件以会话或流为单位进行切分、预处理、特征工程、基于机器学习算法的分类过程。在面对混淆分类的问题上引入了混淆分类器构成多级分类器从而提升分类的准确率。2、构建深度学习检测模型时,引入去除第三方流量的方式,提高模型的运行效率和检测准确率,再按会话为单位对流量原始数据进行切分,进而转为能够代表流量原始数据特征的灰度图,用二维矩阵作为灰度图的数据结构。在分类领域,由于CNN网络能够较好的学习二维矩阵中具有的空间结构信息,因此采用CNN作为神经网络模型自主地获取流量灰度图中的空间特征。此外,由于会话的内容本质是按照流量交互时间所产生的线性排列数据的分组序列构成,所以采用RNN中的两阶段双向LSTM自主地获取流量中的时序特征,最后通过这两种训练好的深度学习模型对待检测的恶意软件进行识别与分类。3、本文采用的实验数据是真实环境下采集的CICAndMal2017数据集,在机器学习模型下分别在两种场景对该模型进行了评估,实验结果显示在恶意流量与良性流量的二分类中准确率达到了 98.8%,在具体的恶意流量分类中也有95.2%的准确率;在深度学习模型的CNN和两阶段双向LSTM 下,第三方流量去除之后对测试集中的样本进行恶意软件的分类与识别的效果均大幅提高,将CNN的准确率从88.2%上升至96.8%,而LSTM的上升效果更加明显,准确率从89.2%上升至98.3%。不过深度学习模型需要大量的训练数据,才能展现出较好的结果,而现实生活中会遇到许多小样本问题,此时机器学习比深度学习更适用于此类情况。
其他文献
交通预测是智能交通系统领域中的一个经典方向和研究热点,它有助于交通控制、路线规划、车辆调度等任务,对于缓解交通拥堵以及保障公共交通安全具有重大的作用。影响交通预测的主要因素包括道路网络结构的空间相关性和路况非线性动态变化的时间依赖性。最近的工作将各种深度学习方法应用于交通预测,主要利用图神经网络进行空间相关性建模,利用循环神经网络进行时间依赖性建模。然而,大多数现有方法假设空间相关性是静态的,时间
数据稀疏、知识不完备等问题是制约知识图谱发展的重要因素,因此,完善知识图谱的知识补全算法是领域内的研究热点。现有的知识补全算法无法有效利用知识图谱内知识,以及对开放世界和知识包含的时间信息的忽视导致知识图谱中的知识存在失效情况,无法为基于知识图谱的问答系统提供可靠的知识支持。针对上述问题,本文展开对面向文本问答的开放世界知识补全技术的研究。通过构建面向开放世界的知识动态融合模型,引入开放世界知识补
目前正在研发的VVC、AV1、AVS3等新一代编码标准提高编码效率的手段主要是通过更多模式或更复杂的变换来提高压缩效率。本质上是在用巨大的时间复杂度换取有限的空间复杂度。本文则从主观视觉质量的角度探寻提高编码效率的可能性。传统视频编码技术一直使用客观评价指标作为失真衡量方法,仍然难以代替人眼主观效果评判。本文以基于主观效果的视频编码优化技术为研究主题,重点研究人眼主观感受指标的建模。进一步使用主观
近年来物联网迅速发展,物联网终端规模迅速扩大。然而对大量物联网终端的电池进行更换,需要高昂的维护成本。因而终端的功耗成为限制物联网长期大规模部署的主要因素之一。终端功耗居高不下的原因在于通信与计算的功耗。为降低物联网终端功耗,近几十年来出现了环境反向散射通信技术已经能将终端的通信功耗从mW级降至以W级。其中Wi-Fi反向散射通信系统,因可以借助现有Wi-Fi设备部署,具有易部署的优点。然而现有的W
近年来物联网取得了快速的发展,如何为大量的物联网设备供能成为了当今物联网领域急需解决的关键问题之一。由于具有体积小,寿命长,免维护的优势,使用环境能量采集技术的无源系统在物联网中得到广泛应用。但是,由于能量短缺以及能量采集功率与计算功率不匹配的原因,无源计算系统目前在实际应用中仍然受到较高的任务响应时间的困扰。如果能够进行合理改造使其满足实时计算对于响应时间的要求,无源系统就可以快速响应网关,获得
近年来,随着人工智能技术的飞速发展与我国人口老龄化进程的加快,机器人已经逐渐被应用于各个领域,尤其是一些从事简单工作的劳动力行业。房屋装修作为房地产相关服务的重要组成部分,装修质量和周期至关重要。同时,随着生活质量的高和国家对未来绿色建筑的倡导,人们对房屋装修的要求越来越高。在此背景下我国房屋装修行业逐渐向机械化、专业化、智能化方向转变。随着数据获取技术的发展,语义分割对象已经由二维图像转向体素、
作为区块链2.0时代的重要标志,智能合约具有数据透明、不可篡改、永久运行等特点,这就使得其在解决“信用”问题方面具有天然的优势,近几年来智能合约的数量和规模也在不断扩大,并且功能也日益复杂。但因智能合约的编写和传统软件的编写存在一定的相似性,所以智能合约也不可避免地存在漏洞。智能合约很容易遭到黑客攻击,因为它们很难修补,并且缺乏确保其质量的评估标准,黑客可以在以太坊上发布智能合约中的漏洞,几年前的
视频图像数据维度高、流量大、传输带宽受限,尤其在5G时代下,对高效高性能的编码提出了挑战。如何提升高清视频编码过程中图像的传输质量并确保高效压缩效率,如何尽可能地通过率-失真优化技术平衡码率与失真从而抉择更好的预测模式获得更好的编码性能,都是视频编码研究的关键问题。在问题驱动下,本文分析并建立了时域冗余模型,分别给出了图像级、块级的率-失真优化策略。具体工作分为三个方面。(1)针对编码中占比最大的
随着比特币而出现的区块链技术对传统的中心化服务理念产生了极大的冲击,导致客户更愿意青睐并非一家独大的运营模式。但是数据的去中心化和服务的可维护性却是反比的关系,位于此种关系两种极端情况下的公有区块链和私有区块链由于各自的缺点,导致其很难适应现如今的商业运行模式。联盟链的诞生结合以上两种区块链运行模式的优点,进一步克制各自的缺点,成为时下各大商业化区块链的首选。目前联盟链的日常运行完全依赖于管理员节
作为众多自然语言处理任务的基础,词语的语义表征和学习成为了近年来的研究热点。最初的大量研究成果都是针对英语,德语等符号形语言,而中文作为象形文字具有其独特的特点。于是一些中文研究者利用中文词语中字,偏旁部首,部件构造等细粒度特征对中文语义表征算法进行了优化,使得词语的语义表征在中文自然语言处理任务中效果更好。然而,这些现有中文语义表征的算法仅仅关注于词语内部原始的特征,没有深度挖掘出词语-词语之间