论文部分内容阅读
载波相位站间共视时间频率传递技术已日臻成熟,其中模糊度问题一直是这项技术的研究重点。国际GNSS监测评估系统(iGMAS)提供包括北斗卫星在内的精密卫星轨道等产品,因此开展基于北斗卫星的精密时间传递就成为了当前国际研究热点。我国北斗卫星导航系统(BDS)已建成基本系统并开始提供服务,并且北斗系统是混合星座,具有多颗地球静止轨道(GEO)卫星。基于GEO卫星对广大区域一直可视的优势,使用北斗GEO卫星的载波相位观测技术,借助于iGMAS产品,开展站间精密的时间频率传递研究,这种新方法命名为“基于北斗GEO卫星的精密共视时间频率传递方法”(PCVTFT)。本文建立了PCVTFT测量模型,开展了单星的PCVTFT试验,开展了接收机时延相对标校试验研究,分析了轨道和电离层误差等的影响。论文主要研究成果和创新点如下:(1)基于北斗系统的特色,提出了基于北斗GEO卫星的精密共视时间频率传递方法(PCVTFT),建立了使用单GEO卫星的PCVTFT测量模型。PCVTFT的主要优点是在时间传递的时候可以有效减少模糊度数量,并可实现任意校频周期的频率传递。(2)基于iGMAS平台和北斗GEO卫星,开展了PCVTFT试验,1)对于西安-临潼基线(30km基线长度),给出了半个月无周跳的结果,并与光纤时间频率传递结果进行比较,二者的吻合程度(RMS)为0.13ns;2)西安-长春2000km长度的基线,给出半个月无周跳结果,与TWSTFT结果进行比较,吻合程度(RMS)为0.44ns;给出了长弧段、标准周跳修复的PCVTFT结果,吻合程度(RMS)为0.5ns;3)西安-喀什3000km长度的基线,PCVTFT方法得到的站间钟差与TWSTFT结果进行比较,吻合程度(RMS)为0.76ns。这些结果表明:在2000km-3000km长基线情况下,PCVTFT时间传递准确度与TWSTFT基本相当;并且PCVTFT性能与基线长度有关,基线越短性能越好,在30km中短基线情况下,PCVTFT时间传递准确度达到0.13ns。(3)基于北斗民用精码数据,开展了接收机时延相对标定方法试验研究。设计了并址共源的测量方式,对接收机和天线时延进行整体标定。站坐标事先用PPP方式精密解算,使用了iGMAS提供的事后精密轨道。在临潼开展了iGMAS接收机和另外一台接收机的相对时延标定试验。试验结果表明,使用民用精码的接收机时延相对标定精度为0.52ns;使用相位平滑伪距方法得到的接收机时延标定精度0.26ns。试验结果对于PCVTFT等高精度时间传递具有重要参考意义。(4)分析了GEO轨道误差和电离层误差对PCVTFT的影响。针对目前在轨的几颗GEO卫星,对西安-长春、西安-三亚、西安-喀什等基线,计算并分析了GEO轨道误差对PCVTFT的影响。对GEO双频解算的电离层产品与IGS的TEC产品进行了比较分析。另外对电离层2阶项进行了计算,并分析了对PCVTFT的影响。(5)开展了PCVTFT实时应用示范设计。以中科院国家授时中心站、长春人卫站、喀什站、乌鲁木齐站和三亚站为数据源,设计了实时时间传递方案和数据处理中心。实时数据处理采用了iGMAS提供的超快星历,站间钟差产品在数据处理中心提供网络服务。