论文部分内容阅读
有机电致发光材料以其驱动电压低、响应速度快、分辨率高等优点,已成为当今光电信息功能材料领域的研究热点之一;而且随着超分子化学的快速发展,荧光分子探针在生命科学的应用开始受到人们的重视,设计、合成新型的荧光衍生物逐渐成为当今有机合成领域的研究热点。本文围绕脱氢枞酸芳胺荧光衍生物的合成、荧光性能以及它们在空穴传输材料和肿瘤细胞荧光成像方面的应用展开研究,取得如下研究成果:1.通过C-N偶联的方法设计、合成了7个脱氢枞酸二芳胺(5a~5g)和8个脱氢枞酸三芳胺(6a~6h)两个系列新型化合物。二芳胺化合物的合成采用钯催化的C-N偶联工艺,首次替代文献报道的铜催化的N-芳基化反应。物质结构通过元素分析、IR、1H NMR、13CNMR、MS及X射线衍射等确证。详细研究了它们的紫外可见吸收光谱、荧光光谱、量子产率和荧光寿命,以及在不同极性溶剂中的荧光发射光谱特征。发现它们的紫外吸收波长在275-345nm,最大荧光发射波长在348-448nm范围内。具有萘环和联苯基团的长共轭体系的化合物以及芳环上连接供电子取代基的化合物荧光发射波长具有较大红移。而且溶剂的极性对所有二芳胺系列化合物(5a~5g)和具有萘环(6f)和联苯基团(6b,6h)的部分三芳胺化合物的荧光发射波长有较大影响,而对其它三芳胺化合物的发射波长影响不明显。所有化合物在不同极性溶剂中呈现不同的荧光强度。2.利用Gaussian03程序,采用密度泛函DFT/B3LYP方法首次对两个系列脱氢枞酸芳胺化合物的分子构型和分子前线轨道HOMO、LUMO图以及能级进行全优化,分析了分子结构与荧光性能之间的关系。发现含有大的共轭体系的萘环、联苯环的化合物以及芳环上连接甲氧基、甲基和溴原子取代基团的化合物具有较小的带隙,而且随着取代基数目的增加,其带隙值变小。从化合物电子跃迁能量的角度分析,预测了这样的化合物将具有更好的荧光性能,这一预测也得到了试验结果的验证。3.对三芳胺系列化合物进行了热稳定性、电化学性能分析,通过循环伏安法测得了物质的氧化还原电位,计算出HOMO、LUMO轨道能级,表明该化合物具有比较好的热稳定性、合适的HOMO能级(-5.26eV to-4.63eV),可以作为多层OLED器件的空穴传输材料。将化合物6a~6h作为空穴传输材料应用到OLED器件中,通过对器件的亮度-电压、电流密度-电压和发光效率-电流密度特性的测试,发现由6a,6d~6h制得的器件具有较低的启动电压、较高的最大亮度和发光效率,其综合性能优于经典的空穴传输材料N,N′-二苯基-N,N′-双-(1-萘基-1,1′-联苯)-4,4′-二胺(NPB)。4.首次对两个系列化合物5a~5g和6a~6h作为荧光分子探针,进行了光稳定性、细胞毒性以及肿瘤细胞成像的研究。结果表明,两个系列化合物(浓度为2.0μM)对A549、7721、7901、Hela肿瘤细胞进行处理,细胞的存活率均大于90%,毒性很低;化合物5a、5b、5e、5g和6a、6b、6d、6e、6g具有较好的光稳定性,而5f、6c、6f及6h光稳定性较差。荧光显微镜成像结果表明,5a、5b、5e、5g和6a、6b、6d、6e、6g均能被肿瘤细胞摄取,呈现较强荧光。5f、6c、6f及6h在肿瘤细胞中孵育后,观察不到细胞内的荧光。可能是由于这些化合物光稳定性较差,虽然被细胞摄取,但在显微镜光源照射下,丧失荧光。同时还发现,化合物在细胞中呈现的荧光强度不一致,细胞质中的强度较高,细胞核中较弱,说明化合物富集在细胞质中,有望作为细胞质探针开发应用。