论文部分内容阅读
固态功率器件越来越广泛的应用于毫米波系统中,固态器件的性能可靠性好、直流供电电压较低、体积小和易于模块化等独有特点逐渐地替代了过去的电真空器件。单个固态功率器件输出功率依然很低,为了达到毫米波系统对大功率的要求,一般常常用功率合成方式来满足系统对大功率的要求,是当前最有效的方式。本文主要基于波导功率合成方法对毫米波固态功率合成技术进行了分析和设计,而且从功率合成网络的电路损耗、幅相不一致性等方面对功率合成效率的影响进行讨论和分析,对功率合成中放大器失效性的问题进行了讨论。并且对径向波导功率合成技术的理论进行了分析。在此基础上设计了Ka波段的十六路固态功率合成放大器,并研制了W波段的十二路以圆波导激励的径向波导功率分配网络。基于分支波导电桥结构,设计并研制了五孔分支波导电桥和七孔分支波导电桥。实测结果显示五孔分支波导电桥在32-40GHz范围内幅相一致性良好,S21,S31在-3.1到-3.4dB。七孔的分支波导电桥相比五孔分支波导电桥带宽得到扩展,但损耗增加了。并且在五孔分支波导电桥的基础上设计了立体式的四路功率合成网络,实测显示在32-40GHz幅相一致性良好。并且还设计了基于五孔分支波导电桥和波导-微带同侧双探针的功率合成网络。加工实物测试结果显示在32-40GHz插损为1dB左右,有着隔离度高、低损耗,宽频带的性能。基于径向波导原理,利用圆波导TE01模的特点,设计并加工了在W波段的以圆波导激励十二路空间径向功率分配网络,并且对圆波导仿真设计了一种花瓣型模式转换器,有效地抑制了圆波导其他低次模的传输。该分配网络实测结果显示,在88GHz-96GHz频带内,输出端口的插入损耗约为11.1~11.7dB左右,回波损耗优于15dB。显示其宽带和低损耗特点,使得它可以应用于W波段的功率合成技术。研制了Ka波段十六路波导空间功率合成放大器。实测结果表明,合成放大模块功率测试表明在36GHz处有饱和输出Psat为35.11dBm,在36GHz处P-1dB为34.51dBm;32~40GHz范围内,其合成效率都大于75%,在36GHz达到最大,为84.3%。