论文部分内容阅读
在应用数学中广泛使用的求解方法,如待定系数法、常数变易法和欧拉待定指数函数法等方法都是具有“试探”性质的求解方法[1],具有此性质的求解方法被称为试探函数法。非线性发展方程求解法中的齐次平衡法[2]、双曲正切函数展开法[3]、Jacobi椭圆函数展开法[4],[5]和辅助方程法[6]~[9]等方法,都是具有构造性和机械化性两大特点的试探函数法[1]。试探函数法在非线性发展方程求解方面已有大量的应用[1],[10]~[26]。本文改进了双曲正切函数展开法,并借助符号计算系统Mathematica,构造了色散长波方程、变形色散水波方程和(2+1)维耗散长波方程的多孤子解。改进了辅助方程法,给出函数变换与辅助方程相结合的方法,构造了(2+1)维势Burgers系统、(2+1)维非对称Nizhnik-Novikov-Veselov 系统、(3+1)维 Jimbo-Miwa 方程和(3+1)维破碎孤子方程等非线性发展方程的复合型新解。探求高维可积系统的局域激发也是孤立子理论研究中重要而又艰巨的任务之一[27]。已知的激发模式有peakon解、compacton解和隐形孤子及其碰撞特性、孤立子的裂变聚变现象、混沌孤子激发、分形孤子激发模式、折叠孤立波和折叠子等。本文借助符号计算系统Mathematica,对得到的非线性发展方程的复合型新解进行数值模拟,以探求非线性发展方程的局域激发模式及特殊结构。第一章简要介绍了孤子理论的历史和发展。概括非线性发展方程的几种求解方法和本文的主要工作。第二章中基于文献[28],[29]里的双曲正切函数展开法,给出了一种改进的双曲正切函数展开法,借助符号计算系统Mathematica,获得了色散长波方程、变形色散水波方程和(2+1)维耗散长波方程的一般项为三角函数与双曲函数的和乘以指数函数的级数型多孤子新解,并分析了解的性质。第三章中基于文献[30],[31]获得的成果,给出函数变换与辅助方程相结合的方法,获得了几种非线性发展方程的复合型新解,并通过符号计算系统Mathematica对得到的复合型新解进行数值模拟,借此分析了复合型新解的性质。1.给出函数变换与Riccati方程相结合的方法,借助Riccati方程的已知解及其相关结论,得到了(2+1)维势Burgers系统的由有理函数与指数函数、三角函数、双曲函数和反双曲函数组合的无穷序列复合型新解。2.给出函数变换与第二种椭圆方程相结合的方法,运用第二种椭圆方程的已知解及其相关结论,构造了(2+1)维非对Nizhnik-Novikov-Veselov系统的由Riemann θ函数、Jacobi椭圆函数和三角函数分别与双曲函数组合的无穷序列复合型新解,及双孤子解与双周期解。3.基于Painleve分析,给出函数变换与第二种椭圆方程相结合的方法,由此构造了一种(3+1)维非线性发展方程的无穷序列复合型新解。第四章中给出了非线性发展方程精确解的两种求解方法,获得了(3+1)维Jimbo-Miwa方程和(3+1)维破碎孤子方程的复合型新解。通过符号计算系统Mathematica对得到的复合型新解进行数值模拟,并以此来分析复合型新解的性质。1.给出函数变换与第二种椭圆方程相结合的方法,函数变换中含有两个分别以z和t为变量的任意函数。运用此方法得到了(3+1)维Jimbo-Miwa方程的无穷序列复合型新解,新解含有以z和t为变量的任意函数。2.改进文献[32],[33]给出的形式解,构造了(3+1)维破碎孤子方程的由三角函数、指数函数和双曲函数组合的九种复合型新解,并分析了解的性质。第五章中概括了本文的主要工作和未来要进行的科研工作。