论文部分内容阅读
近年来,多层陶瓷电容器(MLCC)内电极贱金属化的飞速发展拓展了铜、镍粉的应用领域;在电子、电器、通信、现代电子战争、军舰、核潜艇等领域,为了防止外来的电磁干扰和防止本身的电磁波向外辐射,镍粉由于具有良好的电磁屏蔽性能成为电磁屏蔽导电涂料的主要原料。镍、铜在高温下易氧化,形成绝缘性氧化膜,故在使用过程中必须解决铜、镍粉的氧化问题。本论文旨在探索和研究贱金属铜、镍粉高温抗氧化问题。在调研有关金属粉体表面改性文献及理论分析的基础上,采用银盐滴加镀银新工艺,开展了化学镀法制备银包铜粉与银包镍粉的研究;开展了化学沉淀法在镍粉表面包覆一层锆酸钙进行表面改性的研究,具体内容如下:铜、镍活性比金属银强,与Ag的置换反应不利于光洁的Ag镀层的形成。通过热力学分析,选择了水合肼作为还原剂,分析了其抑制体系中银铜置换反应的可行性。通过Zeta电位及浊度的测量,表征了铜粉与镍粉在不同分散体系的稳定性。首先研究了铜粉在PVP和酒石酸钠溶液体系中的分散,结果表明两者皆具有良好的分散效果;静电斥力是酒石酸钠改善分散体系稳定状态的基础,而静电斥力稳定作用和空间位阻效应是PVP改善分散体系稳定状态的基础。其次研究了镍粉在PVP-水-乙醇及酒石酸钠-水体系中的分散,结果表明两者皆具有良好的分散效果。化学镀法制备铜-银双金属粉过程中,采用了低成本的AgNO3取代传统的PdCl2,研究了惰性基体铜粉表面的敏化、活化工艺及活化机理。研究了镀液pH、反应温度、PVP添加量、水合肼浓度等因素对双金属粉高温抗氧化性能及残留银离子浓度的影响。实验结果显示最佳工艺条件为:铜粉分散液组成:乙醇浓度333mL/L,活化铜粉33.3g/L、PVP用量为10.0g/L、起始pH为10.0、水合肼浓度2.5mol/L;铜粉分散液用量150mL;反应温度50~55℃;银氨溶液浓度0.5mol/L,用量78.1mL。银盐滴加镀银新工艺,有效解决了镀银过程中银粉单独沉积的问题,制备的银包铜粉仍具有良好的分散性、常温和高温抗氧化性能;二次包覆双金属粉表面形成了连续的银膜,其氧化增重从原样铜粉的23.78%降低到了1.20%;双金属粉在氧化气氛下仍保持良好的导电性能。化学镀法制备镍-银双金属粉过程中,探讨了镀液pH、反应温度、PVP添加量及加入方式、水合肼浓度、分散体系等因素对双金属粉高温抗氧化性及残留银离子浓度的影响。结果显示最佳工艺条件为:镍粉分散体系组成:乙醇浓度417mL/L,镍粉25.0g/L、PVP添加量为8.33g/L、起始pH为11.0、水合肼浓度2.5mol/L;镍粉分散液用量120mL;反应温度60℃;银氨溶液浓度0.5mol/L,用量51mL,加入方式为缓慢滴加。通过化学镀获得的镍-银双金属粉体具有良好的分散性能;二次包覆镍-银双金属粉高温抗氧化性与原样镍粉相比,起始氧化温度由最初的290.45℃上升到389.36℃。采用化学沉淀法在甲醇-水体系中成功制备了锆酸钙包覆复合镍粉,考察了包覆试剂用量、搅拌速度、包覆试剂加入方式、复合镍粉前驱体热处理温度、搅拌时间、反应温度、分散剂用量、包覆试剂加入速度以及镍粉表面处理对复合镍粉性能、形貌的影响。根据实验结果,获得最佳工艺条件为:包覆试剂以锆酸钙计与镍粉的重量比5.9:100;采用将锆-钙溶液与沉淀剂溶液同时滴加到镍粉的醇水包覆体系中的试剂加入方式;加入流量0.65 mL·min-1;镍粉分散体系总量186 mL,其中H2O 60mL,甲醇126mL;反应温度55℃;反应时间90min;搅拌速度350r/min;前驱体热处理温度690℃。此条件下制得的复合镍粉,通过TG-DTA、SEM、导电性等来表征其性质,结果表明所得复合镍粉具有良好的导电性及高温抗氧化,粉体分散性好,适于用作MLCC内电极材料。