【摘 要】
:
受阻路易斯酸碱对(frustrated Lewis pairs,简写为FLPs)化学由于其独特的化学性质吸引了国内外许多学者的关注。在过去的十多年间,FLPs的发现为主族元素化学在催化氢化,小分子活化和有机合成领域提供了全新的反应设计思路。在本论文的探索过程中,我们发现了一些有别于经典FLPs的新型反应模式,这为传统的有机化学教科书补充了新鲜的血液。本论文主要是通过两类FLPs活化一系列化学键(单
论文部分内容阅读
受阻路易斯酸碱对(frustrated Lewis pairs,简写为FLPs)化学由于其独特的化学性质吸引了国内外许多学者的关注。在过去的十多年间,FLPs的发现为主族元素化学在催化氢化,小分子活化和有机合成领域提供了全新的反应设计思路。在本论文的探索过程中,我们发现了一些有别于经典FLPs的新型反应模式,这为传统的有机化学教科书补充了新鲜的血液。本论文主要是通过两类FLPs活化一系列化学键(单键/三键)得到了许多结构新颖的化合物,具体内容概括如下:第一章为绪论,简述了FLPs的发现及反应机理,重点介绍了近几年发展的受阻自由基酸碱对(FRPs)的类型及应用,将FRPs参与的反应进行分类,总结了其与众不同的反应性。此外,本章还介绍了FLPs活化炔烃的两种主要的反应方式,即加成反应和去质子化反应。第二章主要研究了新型FRPs对不同类型化学键的活化。合成的三例FRPs首次以单电子转移(SET)的方式实现了B-H键的均裂,同时生成了一个全新的氧桥连的偕N/B FLPs,并研究了其与水和甲醇等小分子的反应。此外,FRPs也能活化O-H键,通过单电子还原的方式还原水释放氢气。第三章重点研究了FLPs接力活化碳碳三键和碳-氢键构筑环状化合物的反应。通过改变底物上连接的炔烃种类(端炔/内炔),FLPs能够可控地诱导碳碳三键发生偶联反应,生成吲哚并七/八元环的产物,且该反应具有较高的专一性和较好的底物普适性。七/八元中环类化合物由于跨环张力的原因不如五/六元碳环稳定,这一类反应的发现为合成化学里中环化合物的构筑提供了新的思路。本章还对该反应机理进行了深入的研究,分离并应用单晶表征了关键中间体。后续实验发现,通过类Zweifel烯基化反应可以脱去七元环产物分子里的含硼基团在无金属催化的条件下构筑碳碳键,这极大地拓展了这一反应的应用范围。第四章主要总结了本论文两部分研究内容的创新点,同时提出了对后续工作的展望。
其他文献
随着不可再生能源的枯竭,新能源的开发和利用已迫在眉睫。氢气完全燃烧的产物只有水,能降低温室气体排放,是最有发展前景的能源。金属氢化物储氢容器作为氢气储运的关键部件,其使用压力低,在合适的温度下自由吸/放氢,提高氢能应用安全性。现有的金属氢化物储氢容器换热性能差,极大影响容器吸/放氢效率,制约金属氢化物储氢技术的发展。因此,研究换热性能更优的金属氢化物储氢容器对发展固态储氢技术具有积极意义。论文取得
硼酸是一种重要的无机化工原料,在国民经济发展中起着重要作用。我国虽然是硼资源大国,但是由于硼矿品位较低和加工工艺限制,致使所产高纯硼酸无法达到核电工业要求,核用硼酸主要依赖进口,为了打破国外技术垄断,更便捷低廉地提供核电用硼酸,开发具有我国自主知识产权的核用硼酸制备技术非常迫切。本论文旨在制备出核电级高纯硼酸,在前人硼酸酯制备基础上,为了对比制备过程中不同硼源对硼酸转化率和产品纯度的影响,研究了不
氢能作为未来的主要能源之一,其利用广泛、来源材料易取,较电能有储存量大、运输方式灵活的特点,利用新能源制氢系统大规模制取氢气,以此解决新能源的消纳问题和加速向氢能社会的转型,是一种可行的措施。而新能源制氢系统目前有许多需要解决的技术问题,主要包括了运行控制策略、储能及其容量配置、能量管理及电解水制氢技术。本文针对新能源制氢系统的运行控制策略进行研究,主要的工作有以下几点:构建新能源制氢系统,并提出
探索利用可再生能源、提高能源利用率已成为现代社会普遍关注的问题。本课题组基于开式逆电渗析法(Reverse electrodialysis,RED)盐差能发电原理,同时汲取吸收式制冷技术和热法海水淡化技术在低品位热能利用领域的优势,提出一种闭式逆电渗析法热-电/氢循环转换方法。工作过程为:首先利用蒸馏法将热能转换为浓、稀两股溶液间盐差能;然后基于RED原理通过溶液混合及离子跨膜迁移,形成电堆内离子
与各向同性的多孔炭材料相比,形貌各向异性多孔炭将炭材料本身良好的导电导热性、高的比表面积、丰富可调的孔道等性质与各向异性的形貌相结合,表现出独特的物理化学性质,如复杂的堆积形式、特殊的接触效应或方向性的作用力,成为储能、生物医药、催化、纳米器件等领域极具应用潜力的新型炭材料。由于自然对称的基本原理,形貌各向异性的环状纳米粒子的构筑,尤其是通过溶液化学合成方法,往往面临巨大的挑战性。在纳米尺度下定向
本文研究了甲壳类生物质蟹壳和其主要成分甲壳素在水热条件下,通过酸性离子液体催化,制备乙酰丙酸、氨糖、乙酰氨糖,优化了反应条件,考察了酸度和离子液体的结构对产率的影响,并且通过中间体的捕捉,研究了反应的可能机理。本文采用原生生物质蟹壳直接进行反应,为甲壳类生物质的转化提供了新的化学方法。水热条件下,使用酸性离子液体[C3SO3Hmim]HSO4催化蟹壳,在高温条件下使反应高选择性地生成乙酰丙酸。通过
吡唑啉酮是一类非常重要的含氮杂环,它广泛地存在于天然产物、医药和螯合物中。近年来,螺吡唑啉酮类化合物已被证明是一种很有前途的药效基团。因此,螺环的构建引起了合成化学家的浓厚兴趣。在过去的几年中,关于吡唑啉酮螺环的构建策略已经有了较多的报道,主要为吡唑啉酮螺全碳环和吡唑啉酮螺含氧杂环的合成。然而,在吡唑啉酮的C-4位连接氮原子的螺环结构还少有报道,在已报道的合成策略中通常底物适用性窄,对映选择性低。
金属杂稠芳香化合物作为一类新颖的芳香体系,兼具着独特的光学性能与电学性能,在生物医学、光电材料等领域具有潜在的应用价值,多年来备受研究人员的关注。金属杂稠芳香化合物可以分为金属苯类配合物与金属杂戊搭烯类配合物两大类,实验与理论研究表明,二者均具有良好的芳香性。金属吡喃鎓稠芳香化合物是金属苯系列的重要组成部分,但是对其的研究相对较少。自1997年首例金属吡喃鎓——铱杂吡喃鎓被成功构筑,再无其它金属吡
金属微柱阵列具有比表面积大、电化学特性优良、强度大等优点,在工业领域具有广阔的应用前景,其制作方法受到了科研人员的密切关注。UV-LIGA技术作为金属微柱阵列的主要制作方法之一,目前在制作工艺上仍然存在一些亟待解决的问题,尤其是在微盲孔电铸过程中由于析氢副反应导致“失铸”的问题。本文将针对微盲孔中电铸镍的“失铸”问题进行分析及研究,提出一种兆声辅助电铸的方法来解决“失铸”问题。通过数值模拟的方法定
氢能被视为21世纪最具发展潜力的清洁能源,是一种优良的能源载体,其开发与利用是氢动力汽车、氢燃料电池技术发展的关键。等离子体重整制氢技术作为一种启停迅速、可处理燃料种类多、无需催化剂的新兴技术,可以克服传统催化重整制氢工艺操作温度高、启停慢、工艺流程复杂、催化剂易失活等缺陷,在车载制氢方面具有独特的优势。目前,用于滑动弧等离子体部分氧化重整甲烷制氢的等离子体电源多为直流电源、工频交流电源和低频交流