论文部分内容阅读
电阻抗层析成像(Electrical Impedance Tomography, EIT)技术是一种无损伤的可视化检测技术,具有高时间分辨率、无辐射、非侵入、价格低和便携性等优点,目前已应用于医学监护、工业检测等领域,但EIT技术的低空间分辨率限制了其在应用领域中的发展。为提高重建图像质量,本文对EIT的重建算法展开研究,主要包括数据融合、正则化算法等,具体如下:
1.针对EIT单一激励模式的局限性,进行了多种激励模式数据融合的研究,提出了基于Choquet积分的多激励模式融合算法。该算法揭示了激励模式测量值之间的交互关系,从而剔除冗余信息,筛选出每种模式下的最优测量值进行融合成像。结果表明,该算法融合了每种激励模式的优势,有效改善了重建图像质量。
2.为提高EIT用于人体肺部成像时的重建图像质量,将胸腔结构和电导率分布作为先验信息融入EIT的重建算法当中。首先,对肺癌患者的正常组织和癌变组织进行了阻抗频谱测量,并通过分析获得了最能反应正常组织和癌变组织差异的频率对,为开展用于肺癌检测的频差EIT研究提供了先验基础。然后,提出了融合先验信息的扩展Kalman滤波算法,利用人体胸腔的器官结构和电导率分布等先验信息构造正则化项,并将其作为目标函数中的“惩罚项”,克服EIT逆问题的“不适定”性。结果表明,该算法可有效改善重建图像质量,且具有良好的抗噪声能力。最后,针对EIT的肺癌组织检测和肺部重建,分别提出了两种基于先验信息的正则化参数确定方法,并利用正则化算法进行图像重建。结果表明,与经典的L曲线法和广义交叉验证法相比,所提出的两种方法能确定出更加准确的正则化参数,提高重建图像质量,并对先验信息的扰动具有较好的鲁棒性。
3.提出了一种基于Lp正则化的自适应重加权算法,该算法能够快速求解Lp正则化的目标函数,在迭代过程中自适应确定每个待求未知量对应的p值,并在理论上进行了收敛性分析。结果表明,与其他经典的正则化算法相比,该算法能够有效改善重建图像质量,具有较高的运算效率,并对正则化参数的扰动具有较强的鲁棒性。
4.提出了一种基于随机矩阵聚类的正则化参数确定方法,深入分析了该算法的基本性质和理论基础,并利用Tikhonov正则化算法进行图像重建。结果表明,与经典的L曲线法和广义交叉验证法相比,该算法可以确定出更加准确的正则化参数,提高重建图像质量。
1.针对EIT单一激励模式的局限性,进行了多种激励模式数据融合的研究,提出了基于Choquet积分的多激励模式融合算法。该算法揭示了激励模式测量值之间的交互关系,从而剔除冗余信息,筛选出每种模式下的最优测量值进行融合成像。结果表明,该算法融合了每种激励模式的优势,有效改善了重建图像质量。
2.为提高EIT用于人体肺部成像时的重建图像质量,将胸腔结构和电导率分布作为先验信息融入EIT的重建算法当中。首先,对肺癌患者的正常组织和癌变组织进行了阻抗频谱测量,并通过分析获得了最能反应正常组织和癌变组织差异的频率对,为开展用于肺癌检测的频差EIT研究提供了先验基础。然后,提出了融合先验信息的扩展Kalman滤波算法,利用人体胸腔的器官结构和电导率分布等先验信息构造正则化项,并将其作为目标函数中的“惩罚项”,克服EIT逆问题的“不适定”性。结果表明,该算法可有效改善重建图像质量,且具有良好的抗噪声能力。最后,针对EIT的肺癌组织检测和肺部重建,分别提出了两种基于先验信息的正则化参数确定方法,并利用正则化算法进行图像重建。结果表明,与经典的L曲线法和广义交叉验证法相比,所提出的两种方法能确定出更加准确的正则化参数,提高重建图像质量,并对先验信息的扰动具有较好的鲁棒性。
3.提出了一种基于Lp正则化的自适应重加权算法,该算法能够快速求解Lp正则化的目标函数,在迭代过程中自适应确定每个待求未知量对应的p值,并在理论上进行了收敛性分析。结果表明,与其他经典的正则化算法相比,该算法能够有效改善重建图像质量,具有较高的运算效率,并对正则化参数的扰动具有较强的鲁棒性。
4.提出了一种基于随机矩阵聚类的正则化参数确定方法,深入分析了该算法的基本性质和理论基础,并利用Tikhonov正则化算法进行图像重建。结果表明,与经典的L曲线法和广义交叉验证法相比,该算法可以确定出更加准确的正则化参数,提高重建图像质量。