论文部分内容阅读
近年来,孔性配位聚合物已引起化学家、材料学家们的广泛关注,主要是由于这些化合物不仅具有美丽的结构,同时在气体吸附、离子交换、催化、磁性材料以及光电子器件等领域具有潜在的应用价值。然而,如何控制合成目标化合物以及进一步提升化合物的相关性能仍是巨大的挑战。 本论文对酰胺功能基修饰有机多酸孔性配位聚合物的形成影响因素以及吸附、分离和离子识别等性能进行了较为系统的研究。 首先,我们研究了金属离子对形成不同维度配位聚合物的影响以及温度和调制剂在控制pcu类型穿插网络位移的作用。在相同系统条件下,酰胺修饰二酸配体分别与过渡金属离子(Cd2+、Mn2+和Zn2+)自组装形成了三种不同维度的配位聚合物(1-3)。但是非常有趣的是,随着配合物1-3维度的增加,金属离子配位数的逐渐减少。另外,在相同系统条件下,首次通过改变反应温度和调制剂的浓度,精准调控了穿插网络位移的程度,得到不同孔尺寸的配合物材料(4-5)。气体吸附测试表明,它们具有不同的高压氢气存储性能(4:1.6wt%;5:1.9wt%)。 其次,我们利用低对称酰胺修饰有机三酸配体,分别与过渡金属离子和稀土金属离子组装,成功得到了七个新颖的孔性配位聚合物,并深入研究了结构与性能的关系。H3L3配体与Cu2+在水热条件下反应得到一个agw拓扑类型的网络结构,该网络由三种不同类型的孔堆积而成,且孔墙上浓密镶嵌了功能化的酰胺基团。气体吸附测试结果表明配合物6具有较高的比表面积(2690m2·g-1),并且表现出较高的二氧化碳吸附存储能力(22.12mmol·g-1,273K和20bar)以及混合气体中较高的选择性吸附二氧化碳的能力(CO2/N2:25.1-60.8和CO2/CH4:13.7-46.6)。基于孔性配位聚合物中酰胺基团对二氧化碳具有较高的分子识别作用,该类材料也有望识别小的路易斯酸离子。稀土配位聚合物7和8孔道中的酰胺基团对Cu2+和Ag+有一定的相互作用,从而减弱了有机配体作为稀土离子f-f跃迁的天线功能,使得荧光发生淬灭,实现离子识别功能。 第三,自从Yaghi于2003年提出网格合成策略以来,该策略在单一配体运用上已经得到很多成功的例子,但是多元混合配体的网格合成还处在初级阶段。本论文利用H3L3/对苯二甲酸,H3L3/萘二酸和H3L3/联苯二甲酸等二元混合配体与Zn4O组装得到三个具有相同拓扑网络的孔性配位聚合物(10-12)。其中Zn4O打破了传统的6连接模式,首次形成7连接模式,从而形成阴离子骨架网络。所形成的阴离子骨架沿a轴包含四方形一维孔道和三角形一维孔道。由于辅助二酸配体的长度的变化,三角形的孔道尺寸得到了系统的调控。即使有阴离子占据部分的孔空间,配合物10-12对二氧化碳、甲烷以及氢气等仍表现出一定的吸附存储性能。因此,多元化混合配体网格合成策略为进一步探索合成优良性能的晶体材料打下基础。 综上所述,配体中引入功能化的酰胺基团对其形成配合物的组装和相关性能产生重要的影响,特别是对二氧化碳以及较小路易斯酸离子的识别具有非常积极的作用。为进一步通过晶体工程原理设计和合成孔性多功能配位聚合物有一定的贡献。