平面任意形状夹杂与半空间椭球夹杂解析解与封闭解研究

来源 :重庆大学 | 被引量 : 0次 | 上传用户:dgjklfkgl
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文的研究是基于国家自然科学基金面上项目“轴承钢接触疲劳的微观结构演化机理和实验研究(No.51475057)”,“含夹杂或裂纹非均质材料摩擦磨损的微观机理研究(No.51875059)”,中央高校基本科研项目(No.106112017CDJQJ328839,No.2018CDYJSY0055)”以及重庆市研究生科研创新项目“非均质材料摩擦磨损的微观机理研究(No.CYB17025)”。非均质材料由于其具有轻量化、高强度、抗腐蚀等方面的优异性能,被广泛应用于机械传动系统、航空航天、风能发电、国防民用
其他文献
实现C-H键的选择性活化和转化虽然在有机合成中极具挑战性,但却是高效、绿色、快速构筑各种有机分子骨架的重要手段,是有机合成化学的热门研究领域之一。本论文从开发新试剂和新反应模式的角度出发,对两类C-H键直接官能团化反应进行了细致的研究,主要包括两个方面的内容:一、以硝酸银、过硫酸钾等为氧化剂,通过含氮杂环C-H键的直接膦酰化实现了一系列P,N-双齿配体前体的简便、高效合成;二、通过对[(X-Cp)
学位
真核细胞中基因转录过程包括起始、延伸以及终止等多个相关的阶段。在大多数的基因转录过程中,RNA聚合酶II暂停在转录起始位点附近,转录的重新开始需要正性转录延伸因子b(P-TEFb)磷酸化RNA聚合酶II大亚基CTD上的第二位丝氨酸(Ser2)以及负性转录延伸因子DSIF和NELF,激活基因转录延伸过程。人类免疫缺陷病毒(HIV-1)正是利用宿主细胞内的上述转录延伸调控机制调节自身病毒基因转录。HI
学位
传统能源的枯竭已成为当今世界关注的焦点与主要矛盾所在,寻找和开发利用清洁高效的新型可再生能源是解决能源危机问题的理想途径。氢气作为一种高效的能量载体,具有清洁无污染,能量密度高,便于运输等优势。因此将太阳能转化为氢能是一种理想的能源转化途径,以有效解决能源的短缺问题。光催化分解水制氢则是一种最直接、最简便的氢能转化方式。但对于单一物相的光催化体系,光解水产氢的活性仍然较低。因此,设计和构建高性能的
学位
锂离子电池应用领域的扩展对其能量存储性能提出了更高要求。因此,开发高容量和能量密度电极材料具有重要意义。基于碳材料在锂离子电池电极材料中的广泛应用,本论文主要进行了硫、氧化物/碳复合材料的制备及其储锂性能研究。首先,通过静电纺丝、电沉积等工艺得到一种还原氧化石墨烯包覆的多孔硫/碳复合物纤维薄膜(rGO@S-PCNP),并将其直接作为锂-硫电池正极。电化学测试结果表明,载硫量约为1.5 mg cm-
学位
GeSn合金作为Ⅳ族元素与CMOS工艺相兼容,是准直接带材料,具有高载流子迁移率,响应波段覆盖近红外乃至中红外波段,是Si基高性能光电子器件的理想材料,尤其是实现Si基高效光源的最佳候选材料之一。本文分别研究了热退火和脉冲激光退火使GeSn薄膜晶化的过程和规律。制备出绝缘衬底上大晶粒GeSn材料(GSOI)和Ge衬底上单晶GeSn材料。提出Sn扩散诱导晶化制备高Sn组分GeSn量子点的新方法,观测
学位
催化作为现代工业的重要组成部分,在能源、材料和环保等方面为社会的飞速发展提供了保障,极大地减少了能源耗费、废物排放。但是,工业催化剂的结构和成分非常复杂,使得催化剂构效关系的研究和高性能催化剂的理性构筑成了一个难点。表面科学研究通常在高真空环境中对单晶催化剂进行构效关系研究,但这与真实的催化环境存在材料、压力等方面的巨大差距。在常压或者高压环境中对纳米晶模型催化剂进行构效关系研究,因其更加接近真实
学位
金属催化剂的表界面电子结构在电催化反应中发挥着决定性的作用,其通过影响反应物、(表面)中间物种和产物的构型及它们与催化剂间的相互作用,从而控制着催化剂的活性、稳定性和选择性。因此,借助先进光谱技术原位分析与监测金属表界面电子结构及其对电催化过程的影响,对深入理解催化反应的构效关系和机理具有重大意义,但也极富挑战性。针对这一挑战,本论文首先在具有明确表面状态和电子能级的单晶表面构建了异质结,充分发挥
学位
近年来,利用重质原油生产高质量超清洁燃料的技术途径正面临着巨大的机遇与挑战,而加氢工艺是改善油品质量最重要的手段之一,其中加氢催化剂作为加氢处理的关键环节,其载体的研发受到广泛关注。本文针对传统工业氧化铝及分子筛载体进行优化设计或改性,主要研究内容如下。首先,采用高效、简便的水热法合成了一系列不同形貌的纳米氧化铝载体材料,探究了氧化铝载体不同晶面暴露情况对催化剂的物化性质、活性相结构以及加氢脱硫反
学位
声波和光波的调控在国防、航空航天以及医疗等领域有着十分重要的作用。然而普通天然材料在对声波与光波的调控方面存在一定的限制。因此迫切需要可以有效调控声波与光波的人工微结构。声/光子晶体是材料常数周期变化而形成的新型人工复合材料,通过设计它们的单胞微结构,可以展现带隙、单向传输、类狄拉克锥以及拓扑边界态等奇异的特性。利用这些奇异特性可以实现隔振降噪、电磁波屏蔽以及隐身等功能。因此,声/光子晶体可以突破
学位
气体动压箔片轴承由弹性箔片和刚性轴承套组成,是一种以环境空气为润滑介质、具有柔性的动压轴承,因为具有高转速、长寿命、低成本、无油润滑和结构紧凑等优点,能显著提高旋转机械的DN值(转子表面线速度)、能量密度和效率,被广泛应用于空气循环机、高速电机、高速鼓风机/压缩机、微型涡喷发动机、微型燃气轮机和车用燃料电池用空压机等超高速设备。然而,因为气体动压箔片轴承自身的非线性动力学特性导致其支承的转子系统在
学位